
EXAMS Annual Meeting 2019 THE VALUE OF NUCLEAR

Sharing of Good Industry Practices and/or Lessons Learned in Nuclear Criticality Safety

Using Sensitivity-Uncertainty Methods to Improve Traditional Validation

Jennifer Alwin

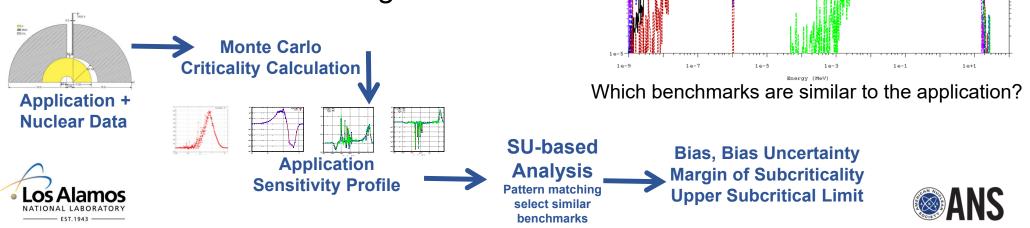
Using Sensitivity-Uncertainty Methods to Improve Traditional Validation

pmf-011,

1e-1

1e-2

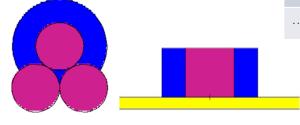
EALF=83 keV


EALF=780 keV

Case 28, EALF=120 keV

cm-002

pmf-001, EALF=780 keV


- Selection of Benchmarks
- Rejection of Outliers
- Basis for Margin of Subcriticality
- Quantification of Missing Uncertainties

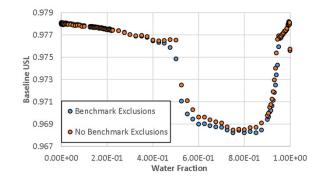
Selection of Benchmarks

- ANSI/ANS-8.24-2007:
- "Appropriate system or process parameters that correlate the experiments to the system(s) or process(es) under consideration shall be identified. Automated selection systems that consider isotopes, their abundances, energy ranges, cross-section uncertainties, or other parameters may be used."
- Neutronic similarity based upon specific energy, isotope & reaction
 - Correlation of application to benchmarks
 - Example: Pu oxide-water mixture
 - 3 cylinders
 - Water, steel reflection
 - H/D variation

	Case 1: Dry Oxide	EALF= 0.606	ANECF= 1.70	Case 67: 60% Water	EALF= 0.009	ANECF= 0.969
	Bias		0.00852	Bias		0.00797
5,	Bias Uncertainty		0.00620	Bias Uncertainty		0.01299
	Nuclear Data Unc. Margin		0.00092	Nuclear Data Unc. Margin		0.00173
	Software/method margin		0.00500	Software/method margin		0.00500
	Benchmark	Ck	weight	Benchmark	Ck	weight
	PMF011-001	0.9905	1.0000	PCM001-002	0.9383	1.0000
	PMF021-002	0.9884	0.9462	PCM002-006	0.8911	0.8455
	PMF036-001	0.9855	0.8753	PCM002-005	0.8850	0.8258
	PMF044-005	0.9847	0.8552	PCM002-007	0.8849	0.8254

Rejection of Statistical Outliers

- ANSI/ANS-8.24-2017:
- "Identification of data outliers may be based on established statistical rejection methods; rejection of outliers shall be based on the inconsistency of the data with known physical behavior in the experimental data."
 - Iterative diagonal chi-squared method until χ^2_{min} < 1.2
 - 10% of Whisper-1.1 library identified as outliers
 - Include or exclude identified outliers to determine impact on USL


Basis for Margin of Subcriticality

- ANSI/ANS-8.24-2017:
- "The margin of subcriticality and its basis shall be documented."
- ANSI/ANS-8.24-2017:
- "Margin of subcriticality: an allowance beyond the calculational margin to ensure subcriticality."
 - S/U tools help support MOS basis: neutronic similarity, nuclear data uncertainties, validation weaknesses

Quantification of Missing Experimental Uncertainties

- Based upon neutronically similar benchmarks

