CNS consolidated nuclear security, Ilc PANTEX PLANT Y-12 NATIONAL SECURITY COMPLEX

Sharing of Good Industry Practices: NCS Engineer Training Qualification Program

Amber McCarthy amber.mccarthy@cns.doe.gov Nuclear Criticality Safety Engineer

Presentation Summary

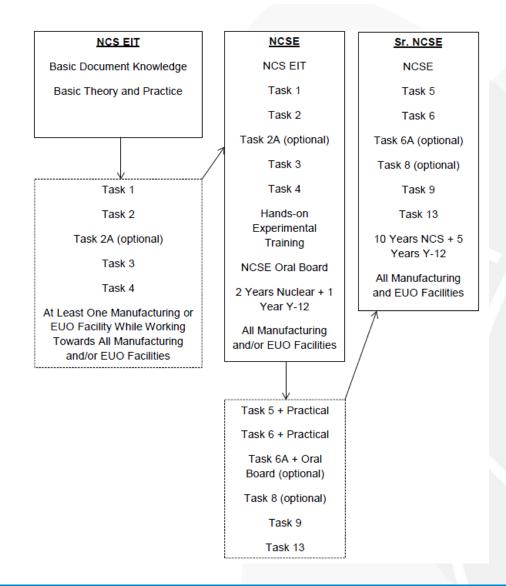
Overview of training program

- Description of qualification process
- Highlight strengths and best practices
- Discussion questions

Training Program Overview

NCS Engineer Classifications

- EIT Engineer-In-Training
 - BS in Engineering
 - Nuclear Engineering
 - Understanding of reactor physics
- NCSE Nuclear Criticality Safety Engineer Fully Qualified
 - Two years experience at a nuclear site, includes one year at Y-12
 - Completion of Y-12 Specific Tasks
 - Hands-on DOE criticality safety course
- Sr. NCSE Senior Nuclear Criticality Safety Engineer
 - Ten years NCS experience, includes five years at Y-12


Training Program Overview

NCS Engineer Training Requirements

- Solid boxes contain minimum requirements
- Dashed boxes contain additional tasks they may work toward qualifying in

Good Practices

- Requirements met primarily through completion of work supporting production operations
- EIT rotating shadows are assigned to the NCSE leads and receive exposure to multiple facilities

4

Basic Theory & Practice Knowledge, Basic Document Knowledge

Hand calculation problems

- Reading critical mass/volume charts
- Single unit
- Arrays

Review DOE Orders/ANSI-ANS Standards

- Plant level procedures
- Operating level procedures

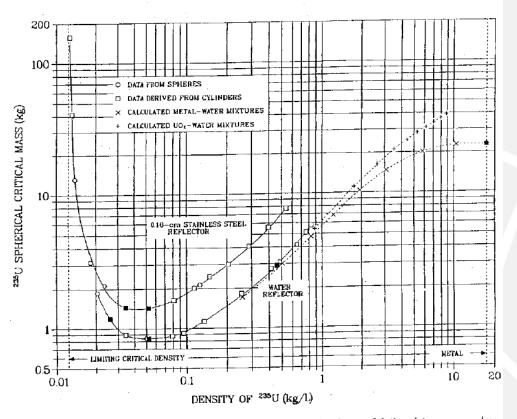


Fig. 10. Critical masses of homogeneous water-moderated U(93.2) spheres. Solution data appear unless indicated otherwise.

Basic Facility Knowledge

Complete facility tours supported by respective NCS group

With a mentor

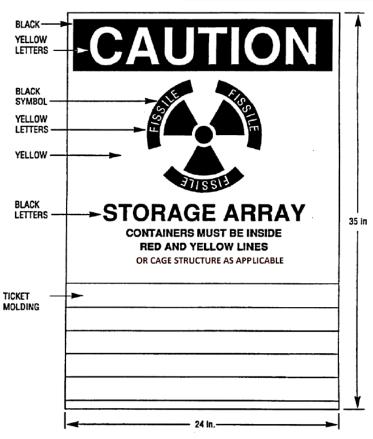
- Review NCS requirements in each building
- Read and review TSR/SAR

Manufacturing Facilities

QP 50401696	NCS 9215	EUO Facilities	
QP 50401686	NCS 9204-2/2E	QP 50401690	NCS 9206
QP 50401698	NCS 9720-05	QP 50401692	NCS 9212 E-Wing
QP 50401729	NCS SNM Vehicle (optional)	QP 50401694	NCS 9212 Remainder
QP 50589904	NCS HEUMF 9720-82	QP 50401702	NCS 9995

Process Reviews

- Review processes approved by CSEs to ensure requirements are being met and are consistent with current process conditions
 - Conduct and document three operational reviews
- Reviews inventory control procedures
- Other reviews according to Y70-164


NCS Evaluation and Documentation

- Review DOE standards & Y-12 procedures
- Discuss multiple specified topics with a mentor
 - CAAS, NCS controls, margins of safety, critical experiments, normal conditions, contingencies, NDA, etc.....
- CSA, CSR suspensions, reactivations, cancellations
- Revise three CSEs
 - Major revisions and updates
- Review site SAR and TSR

Implementing Document Approval

- Operating procedures
 - Minimum three procedures
- Design drawings
 - Minimum two drawings
- Passive design features subject to degradation
- Postings
- SSC grading worksheets
- Surveillance data sheets

Example Fissile Storage Array Posting

Computations

- Perform NCS calculations with computer codes
- Review current validation documents
- Discuss with a mentor:
 - Cross sections, validations, monte carlo methods, monte carlo pitfalls, margins of subcriticality and upper subcritical limits, area of applicability
- Attend training course for either MCNP or SCALE
- Complete three calculations using the same code

X

scale

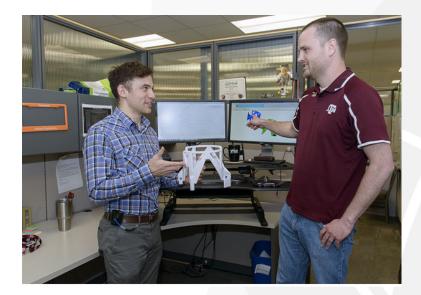
NCSE Oral Board

Practical Examination

- Assess depth and breadth of NCS knowledge
- QVO (Qualification Verification Official) and two qualified NCSEs
- Questions from all areas of qualification process

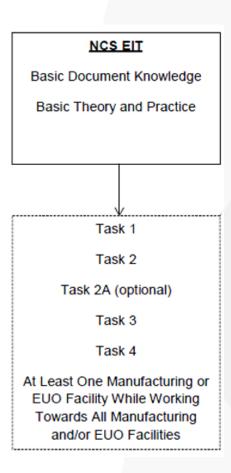
Field Response to Abnormal Conditions

- Response to NCS occurrence deficiency or minor non-compliance
- Minimum of three documented field responses
- Qualification allows NCSE to be on-call


Abnormal Response Simulator

- Training area NCS fissile containers
- QVO conducts back-off scenarios
- NCSE volunteers

Additional Tasks for NCSEs


- Experienced Personnel Evaluation Board
 - Expedited qualification process for those with prior NCS experience outside of Y-12
- Two-Year Requalification
 - Requires documentation of completed NCS works and professional development
- **Task 5** Computation Review
- Task 6 NCS Evaluation/Criticality Safety Process Study Review
- Task 9 Order Compliance and NCS Procedures

NCS New Hires – Classroom Training

Y-12 onboarding 15+ new NCS engineers

- New hires start no later than July 2019
- Streamline time with mentors
- Presenters scheduled weekly through next year

Discussion Questions

- Are there additional NCS training practices not yet discussed other sites find beneficial?
- Is there a topical area in the scope of NCS training that is particularly difficult to develop?
- How is the NCS mentor/mentee relationship fostered?
- What challenges are anticipated training the next generation of NCSEs?

DISCLAIMER

This work of authorship and those incorporated herein were prepared by Consolidated Nuclear Security, LLC (CNS) as accounts of work sponsored by an agency of the United States Government under Contract DE-NA-0001942. Neither the United States Government nor any agency thereof, nor CNS, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility to any non-governmental recipient hereof for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or contractor thereof, or by CNS. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or contractor (other than the authors) thereof.