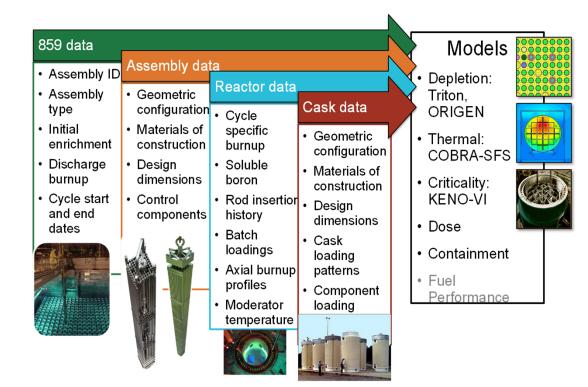


A Method of Performing k_{eff} Validation of As-loaded Criticality Calculations using UNF-ST&DARDS

Justin Clarity B. J. Marshall Kaushik Banerjee John Scaglione

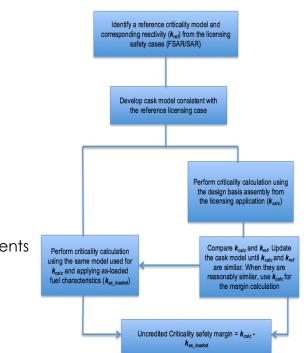
Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy


Overview

- UNF-ST&DARDS
- Criticality calculations within UNF-ST&DARDS
- \bullet S/U based k_{eff} validation
- S/U based $k_{\rm eff}$ validation for UNF-ST&DARDS

UNF-ST&DARDS provides a means to integrate data and analysis tools to estimate safety margins


- A Unified tool that contains modeling information in a database integrated with analysis codes
- Database contains GC-859 collected fuel, irradiation information, and cask loading maps
- The tool also contains
 - templates for a number of canisters and fuel assemblies
 - ORIGEN libraries for a diverse set of fuel assembly types
- Criticality calculations are performed for storage /transportation and disposal

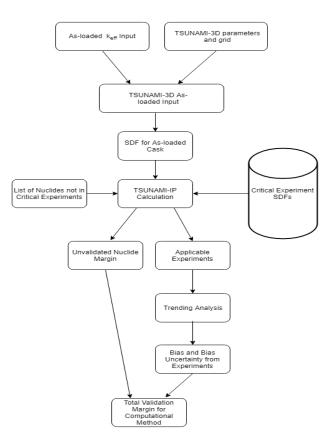
3

Criticality Analysis

- Model Individual assemblies with nominal assembly enrichments, burnups and cooling times for desired analysis date from GC-859
 - Transportation: In-service date to 2100
 - Disposal: In-service date to 25,000 years
- Transportation
 - Calculation of k_{eff} values for each date
 - Calculation of margin to the licensing basis
- Disposal
 - Degraded Neutron Absorber
 - Neutron absorber was not credited in the analysis
 - Assumed survival of basket structure for SS components but failure of CS components
 - Subcritical limit of 0.98 assumed
- To perform more complete criticality calculations k_{eff} and Isotopic validation are necessary

S/U Techniques for Validation

- Typically used for:
 - Judging similarity of safety application model to critical experiment benchmarks (integral indices)
 - Propagating nuclear data uncertainties into uncertainties in k_{eff} used for penalty for unvalidated minor constituents in model
- Calculate sensitivities of k_{eff} to the underlying nuclear data and propagate
 - $C_{kk} = SC_{\alpha\alpha}S^T$


• Calculate correlation coefficients for similarity

 $- c_k = \frac{\sigma_{appexp}^2}{\sigma_{app}\sigma_{exp}}$

• Often trend on values of c_k

UNF-ST&DARDS Validation Process

- Convert CSAS model into TSUNAMI-3D model
- Perform TSUNAMI-3D calculation to generate SDF for As-loaded application
- TSUNAMI-IP calculation to generate c_k values for application and exps and FP uncertainties
- Perform USLSTATS calculation to determine validation bias and bias uncertainty

TSUNAMI-3D Calculation

- Most challenging sensitivity calculation to date
 - Unique composition in each axial node of each
- Three methods of performing calculations
 - Multigroup
 - Serial execution only memory limitations
 - Large memory footprint
 - Over 1 day of cross section processing time alone
 - CLUTCH
 - Allows for parallel execution
 - Requires F*(r)
 - IFP
 - Most accurate but most expensive
- Investigating the use of CLUTCH
 OAK RIDGE National Laboratory

TSUNAMI-IP Calculations

- Used to compare the TSUNAMI-3D generated SDFs to calculate c_k values with a predefined set of SDFs for critical experiments.
- Library of pregenerated SDFs for comparison with application cases
 - 1,643 Experiments that have been used in previous burnup credit validation work
 - VALID and NEA SDFs
 - HTC, LCT, MCT, MST Experiment sets
- Also calculate uncertainty due to minor actinides and fission products
 - No publicly available experiments include these nuclides

Bias Assessment

- USLSTATS to calculate bias and bias uncertainty
- Experiments and k_{eff} s filtered according to c_k using cutoff value
- Calculated via a trend on c_k and extrapolation to 1.0
- Combine bias and bias uncertainty with unvalidated nuclide penalty and administrative margin

Questions?

