

ANS Winter Meeting & Expo 2019 NUCLEAR TECHNOLOGY FOR THE U.S. AND THE WORLD

Thermal Neutron Scattering Cross Sections of U-10Mo

Andrea Saltos R.

PhD Candidate

University of Missouri

Introduction

- The U.S. National Security Administration Material Management and Minimization Reactor Conversion Program is actively working to convert research reactors from the use of high-enrichment uranium to low-enrichment uranium
- LEU require a large increase in uranium density (> 15 gU/ cm³)
- U-Mo alloys, such as U-10Mo (uranium with 10% molybdenum by weight), are under consideration as very high density fuels
- U is alloyed with Mo to preserve the high-temperature BCC phase at lower temperatures

U10Mo sample Source: Vineet et al., J. Nucl. Mater., 465,pp. 805-813, 2015

BCC substitutional alloy Source: http://courses.chem.psu.edu

Introduction

Slowing down of fission neutrons in a reactor can be treated in two parts:

- Above 1 eV :
 - Atoms can be treated as unbound
 - Free-atom neutron scattering cross sections can be used
- Below 1 eV :
 - Energy of neutrons is of the same order as the quantized energy states associated with the vibrations of atoms
 - Interference effects can occur
 - These effects influence the energy and spatial distributions of the thermal neutron population
 - Bound thermal neutron scattering cross sections are needed

Neutron scattering from a single nucleus Source:https://www.slideshare.net/upvita/ne utronscattering

Introduction

- Current transport simulations of U-10Mo rely solely on free atom models which can render large uncertainties in neutron transport calculations
- Knowledge of thermal neutron scattering cross sections are needed for:
 - Accurate prediction of thermal neutron spectrum
 - Reactor physics parameters such as neutron lifetimes, and Doppler and reactivity coefficients

University of Missouri Research Reactor Source: http://www.themaneater.com/photos

Thermal Neutron Scattering Theory

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{1}{4\pi k_{B}T} \sqrt{\frac{E'}{E}} \left[\sigma_{coh} S(\alpha, \beta) + \sigma_{inc} S_{S}(\alpha, \beta) \right]$$

$$S(\alpha, \beta) = S_{s}(\alpha, \beta) + S_{d}(\alpha, \beta) \qquad \qquad \sigma_{coh} \longrightarrow \text{ single atom effective coherent scattering cross section}$$
no interference (incoherent) (coherent)
$$\sigma_{inc} \longrightarrow \text{ single atom effective incoherent scattering cross section}$$

$$elastic \qquad \text{inelastic} \qquad \alpha = \frac{E' + E - 2\mu\sqrt{E'E}}{Ak_{B}T} \longrightarrow \text{ momentum transfer}$$

$$S_{d} = \begin{bmatrix} S_{d}^{0} \\ S_{d} \end{bmatrix} + \begin{bmatrix} S_{d}^{1} + S_{d}^{2} + S_{d}^{3} + \cdots \\ S_{s} = \begin{bmatrix} S_{s}^{0} \\ S_{s} \end{bmatrix} + \begin{bmatrix} S_{s}^{1} + S_{s}^{2} + S_{s}^{3} + \cdots \\ S_{s}^{1} + S_{s}^{2} + S_{s}^{3} + \cdots \end{bmatrix}$$

$$\mu \longrightarrow \text{ cosine of the scattering angle}$$

section

section

Inelastic Scattering Cross Section for an Alloy

- Calculated with:
 - Incoherent approximation
 - Gaussian approximation
- Phonon density of states needed to calculate the scattering law
- NJOY does not need to be modified

$$\sigma = \frac{1}{2k_BT} \sqrt{\frac{E'}{E}} \sum_k x_k \sigma_b^k S_s^k(\alpha, \beta)$$

Incoherent scattering law Adapted from: Nijboer et al., Physica, 32, pp. 415-432, 1966

x: fraction of atoms of type *k*

σ_b^k: single atom effective total scattering cross section
S: self scattering law of atom of type k

Elastic Scattering Cross Section for an Alloy

$$\sigma = \frac{\pi\hbar^2}{2mNVE} \sum_{E_{i < E}} e^{-4WE_i} \sum_{\tau_i} \frac{1}{\tau_i} \left| \sum_{j=1}^N \sqrt{\frac{\sigma_{c,j}}{\sigma_{c,T}}} e^{2\pi i \overline{\tau_i} \cdot \overline{d_j}} \right|^2$$

 High-symmetry material (NJOY)

$$\sigma = \frac{\pi\hbar^2}{2mNVE} \sum_{E_{i < E}} \left| \sum_k x_k \sqrt{\sigma_c^k} e^{-2W_k E_i} \right|^2 \sum_{\tau_i} \frac{1}{\tau_i} \left| \sum_{j=1}^N e^{2\pi i \vec{\tau_i} \cdot \vec{d_j}} \right|^2$$

 $E_i = \frac{\hbar^2 \tau_i^2}{2m}$ Bragg edges

x: fraction of atoms of type k

- W : Debye-Waller factor (calculated from the PDOS)
- τ_i : reciprocal lattice vectors

 d_i : atomic position of the j atom in the unit cell

Disordered Alloy

- Approximations:
 - Ignore diffuse scattering
 - Incoherent part negligible
 - Debye Waller factor depends only on the atomic species
- Implemented by modifying NJOY

Methods

- Calculated the PDOS of U-10Mo using:
 - Molecular dynamics
 - Velocity Autocorrelation Function Method
 - U-10Mo modeled as a random distribution of ⁹⁶Mo, ²³⁵U, and ²³⁸U (20 at. % ²³⁵U enrichment with 10 wt.% Mo)
 - 21x22x23 BCC primitive unit cells
- Used NJOY to calculate the cross sections:
 - Incoherent inelastic cross section using the Gaussian Approximation
 - Coherent part calculation was implemented by modifying the LEAPR module of NJOY

Results: Phonon Density of States of U-10Mo at 300 K

Partial phonon DOS are required to calculate the thermal neutron scattering cross sections

Results: Scattering Law of ⁹⁶Mo in U-10Mo at 300K

Results: Scattering Law of ²³⁵U and ²³⁸U in U-10Mo at 300K

Results: Total thermal neutron scattering cross sections of U-10Mo at 300K

Free-nucleus cases (ENDF/B-VII.1 and ENDF/B-VIII.0)^{1,2} are a linear combination of the three nuclei weighted by atom fractions

¹ Chadwick, M.B., et al. *ENDF/B-VII.1 nuclear data for science and technology*, Nucl. Data Sheets. 112, 12, 2887-2996 (2011). ² Brown, D.A., et al. *ENDF/B-VIII.0*, Nucl. Data Sheets. 148, 1-142, (2018).

Results: Effects on criticality

Criticality as predicted with the thermal cross section from a simple MCNP model of U-10Mo fuel with 20 at.% ²³⁵U

¹Chadwick, M.B., et al. *ENDF/B-VII.1 nuclear data for science and technology*, Nucl. Data Sheets. 112, 12, 2887-2996 (2011). ²Brown, D.A., et al. *ENDF/B-VIII.0*, Nucl. Data Sheets. 148, 1-142, (2018).

- The thermal neutron scattering cross sections of the U-10Mo alloy enriched at 20 at.% ²³⁵U were calculated using a modified version of NJOY
- The calculated scattering cross sections show that consideration of binding effects causes deviations from the free-atom model
- A non-negligible increase in the $k_{\rm eff}$ was found when employing the thermal neutron scattering cross sections

Results: Effects on criticality

Criticality as predicted with the thermal cross section from a simple MCNP model of U-10Mo fuel with 20 at.% 235 U

Library	k _{eff}	Change	
Free-atom (ENDF/B-VII.1) ¹	0.4241	-0-	
Free-atom (ENDF/B-VIII.0) ²	0.4238	0.06%	
U-10Mo thermal (including U235 and U238 data)	0.9505	124.2%	
U-10Mo thermal (not including U235 thermal data)			

¹Chadwick, M.B., et al. *ENDF/B-VII.1 nuclear data for science and technology*, Nucl. Data Sheets. 112, 12, 2887-2996 (2011). ²Brown, D.A., et al. *ENDF/B-VIII.0*, Nucl. Data Sheets. 148, 1-142, (2018).

Effects on Criticality

Criticality as predicted with the thermal cross section from a simple MCNP model of fuel with 2.55% enrichment

Cross Section	keff	∆k _{eff}	
U10Mo 300K (U-238 / Mo-96)	0.51164	- 4.82 %	
U10Mo 300K (U-235/Mo-96)	0.97542	81.46%	
BCC U 300K (U238)	0.53753	-0-	
U10Mo 1113K (U238-Mo96)	0.50758	-5.45%	
BCC U 1113K (U-238)	0.53757	0.13%	
free atom U238 1113k	0.53685	-0-	

Thermal Scattering Cross Sections of UO2

- Calculated using:
 - Available PDOS¹
 - Averaged Debye
 Waller Factor W=WU
 + 2WO
- Compared to data from ENDFVII.1² and ENDFVIII.0³ evaluations

¹ Dolling, G., et al. Can J. Phys, 43, 1397 (1965)
 ² Trkov, A., et al. *ENDF/B-VI and ENDF/B-VII*, National Nuclear Data Center, BNL, Upton, NY (2012)
 ³ Brown, D. A., et al., Nucl. Data Sheets, 148, 1–142 (2018).

Effects on Criticality

Criticality as predicted with the thermal cross section from a simple MCNP model of UO2 fuel

Run (nat.		Inelastic			
enr.)	Fast-data	thermal	Elastic thermal	keff	Change (%)
U-235 data	Free-atom				
U238-data	Free-atom			0.16509	0.000
O-data	Free-atom				
U-235 data	Free-atom				
U238-data	Free-atom	ENDF8	ENDF8	0.3734	126.180
O-data	Free-atom	ENDF8	ENDF8		
U-235 data	Free-atom				
U238-data	Free-atom	calculated	calculated	0.16482	-0.164
O-data	Free-atom	calculated	calculated		
U-235 data	Free-atom	calculated	calcualted		
U238-data	Free-atom	calculated	calculated	0.21764	31.831
O-data	Free-atom	calculated	calculated		

Run (5%.		Inelastic			Change
enr)	Fast-data	thermal	Elastic thermal	keff	(%)
U-235 data	Free-atom				
U238-data	Free-atom			0.24935	0.000
O-data	Free-atom				
U-235 data	Free-atom				
U238-data	Free-atom	ENDF8	ENDF8		
O-data	Free-atom	ENDF8	ENDF8		
U-235 data	Free-atom				
U238-data	Free-atom	calculated	calculated	0.24923	-0.048
O-data	Free-atom	calculated	calculated		
U-235 data	Free-atom	calculated	calculated		
U238-data	Free-atom	calculated	calculated	0.60006	140.650
O-data	Free-atom	calculated	calculated		

¹Trkov, A., et al. *ENDF/B-VI and ENDF/B-VII*, National Nuclear Data Center, BNL, Upton, NY (2012)