Analytic One-Group S₂ Slab Problem with Isotropic Scattering and Fission Applied to Leakage and Neutron Multiplicity Sensitivity

> Jeffrey A. Favorite Radiation Transport Applications Group (XCP-7) Los Alamos National Laboratory

> > 2019 American Nuclear Society Winter Meeting Washington, DC November17–21, 2019

UNCLASSIFIED

Slide 1 of 19

Introduction

⊗ANS

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 192 · 80–114 · OCTOBER 2018 © J. A. Favorite. Published with license by Taylor & Francis. DOI: https://doi.org/10.1080/00295639.2018.1471296

Computer Code Abstract

Check for updates

• NC State University student and CNEC Fellow Alex Clark coded the sensitivity of the second moment of the neutron multiplicity counting distribution into SENSMG.

- + Mattingly worked out a multigroup deterministic method for calculating moments of the neutron multiplicity counting distribution using forward and adjoint solutions.^a
- + O'Brien et al. worked out sensitivities.^b
- + Clark et al. further developed the sensitivities and applied them to improve nuclear cross sections.^c
- I used the rod problem for verification.
- In this talk I present the rod problem and two interesting results:
 - + Derivative with respect to χ .
 - + Derivative with respect to the slab width.

SENSMG: First-Order Sensitivities of Neutron Reaction Rates, Reaction-Rate Ratios, Leakage, k_{eff} , and α Using PARTISN

Jeffrey A. Favorite*

Los Alamos National Laboratory, Computational Physics (X-CP) Division, MS F663, Los Alamos, New Mexico 87545

Received March 26, 2018 Accepted for Publication April 26, 2018

Abstract — *SENSMG* is a tool for calculating the first-order sensitivities of reaction-rate ratios, k_{eff} , and α in critical problems and reaction-rate ratios, reaction rates, and leakage in fixed-source problems to multigroup cross

If you are interested in difficulties regarding sensitivities w.r.t. χ , see my next talk!

^a J. MATTINGLY, "Computation of Neutron Multiplicity Statistics Using Deterministic Transport," *IEEE Trans. Nucl. Sci.*, **59**, *2*, 314–322 (2012); https://doi.org/10.1109/TNS.2012.2185060.

^b S. O'BRIEN, J. MATTINGLY, and D. ANISTRATOV, "Sensitivity Analysis of Neutron Multiplicity Counting Statistics Using First-Order Perturbation Theory and Application to a Subcritical Plutonium Metal Benchmark," *Nucl. Sci. Eng.*, **185**, *3*, 406–425 (2017); http://dx.doi.org/10.1080/00295639.2016.1272988.

^c A. R. CLARK, J. MATTINGLY, and J. A. FAVORITE, "Application of Neutron Multiplicity Counting Experiments to Optimal Cross Section Adjustments," *Nuclear Science and Engineering*, submitted (2019).

UNCLASSIFIED

Slide 2 of 19

An Analytic Transport Problem

- Homogeneous slab of width r_d .
- Constant isotropic neutron source rate density *q*.
- One neutron energy group.
 - + The induced-fission spectrum in one group is 1, but we will carry it along in the equations.
- Scattering is isotropic.
- The quantity of interest R_1 is the leakage from the right side of the slab convolved with a response function.
- Two directions, right and left, with μ_+ the right-going direction cosine and μ_- the left-going.
 - + Directions are constrained to satisfy $\mu_{+} = -\mu_{-}$.
 - + This problem is a regular S_2 discrete ordinates calculation.
- The equations for the forward right-going and left-going fluxes are

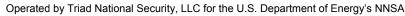
$$\mu_{+} \frac{\partial \psi_{+}(r)}{\partial r} + \Sigma_{t} \psi_{+}(r) - \frac{1}{2} \Sigma_{s} (\psi_{+}(r) + \psi_{-}(r)) - \frac{1}{2} \chi v \Sigma_{f} (\psi_{+}(r) + \psi_{-}(r)) = q,$$

$$\mu_{-} \frac{\partial \psi_{-}(r)}{\partial r} + \Sigma_{t} \psi_{-}(r) - \frac{1}{2} \Sigma_{s} (\psi_{+}(r) + \psi_{-}(r)) - \frac{1}{2} \chi v \Sigma_{f} (\psi_{+}(r) + \psi_{-}(r)) = q,$$

with vacuum boundary conditions

 $\psi_{+}(-\frac{1}{2}r_{d}) = 0$ $\psi_{-}(\frac{1}{2}r_{d}) = 0.$

UNCLASSIFIED



Slide 3 of 19

 $q, \Sigma_t, \Sigma_s, \chi, \nu \Sigma_f$ $\mu_- \qquad \mu_+$ $R_1 = \frac{1}{2} \Sigma_d \mu_+ \psi_+ (\frac{1}{2} r_d)$ $\frac{1}{2} r_d$

The Adjoint Equations

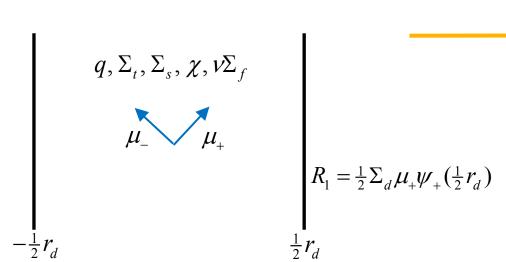
The equations for the adjoint right-going and left-going fluxes are $\mu_{+} \frac{\partial \psi_{+}^{*}(r)}{\partial r} + \Sigma_{t} \psi_{+}^{*}(r) - \frac{1}{2} \Sigma_{s} (\psi_{+}^{*}(r) + \psi_{-}^{*}(r)) - \frac{1}{2} \chi v \Sigma_{f} (\psi_{+}^{*}(r) + \psi_{-}^{*}(r)) = 0,$ $\mu_{-} \frac{\partial \psi_{-}^{*}(r)}{\partial r} + \Sigma_{t} \psi_{-}^{*}(r) - \frac{1}{2} \Sigma_{s} (\psi_{+}^{*}(r) + \psi_{-}^{*}(r)) - \frac{1}{2} \chi v \Sigma_{f} (\psi_{+}^{*}(r) + \psi_{-}^{*}(r)) = 0,$

with a vacuum boundary condition on the left,

 $\psi_+(-\tfrac{1}{2}r_d)=0,$

and a source on the right,

$$\psi_{-}(\frac{1}{2}r_d) = \Sigma_d.$$



- No negative sign in front of the spatial derivative term because these are the *computational equations* (i.e. the equations that will actually be solved) obtained by replacing μ with $-\mu$ and recognizing that adjoint particles travel backwards.
- Thus, "left-going" and "right-going" here are in the computational sense, not the mathematical sense, in that right-going computational adjoint particles are really going to the right.

UNCLASSIFIED

Slide 4 of 19

Solution of Coupled Partial Differential Equations Step 1: Remove the Coupling

$$\mu_{+} \frac{\partial \psi_{+}(r)}{\partial r} + \Sigma_{t} \psi_{+}(r) - \frac{1}{2} \Sigma_{s}(\psi_{+}(r) + \psi_{-}(r)) - \frac{1}{2} \chi v \Sigma_{f}(\psi_{+}(r) + \psi_{-}(r)) = q$$

$$\mu_{-} \frac{\partial \psi_{-}(r)}{\partial r} + \Sigma_{t} \psi_{-}(r) - \frac{1}{2} \Sigma_{s}(\psi_{+}(r) + \psi_{-}(r)) - \frac{1}{2} \chi v \Sigma_{f}(\psi_{+}(r) + \psi_{-}(r)) = q$$

- Take the derivative of the μ_+ equation with respect to r
- Write the μ_{-} equation as $\frac{\partial \psi_{-}(r)}{\partial r} = \dots$
- Write the μ_+ equation as $\psi_-(r) = ...$
- Combine equations to yield

$$\frac{\partial^2 \psi_+(r)}{\partial r^2} - \frac{\Sigma_t}{\mu_+^2} \Big(\Sigma_t - \Sigma_s - \chi v \Sigma_f \Big) \psi_+(r) = -\frac{\Sigma_t}{\mu_+^2} q$$

• Same procedure for $\psi_{-}(r)$, $\psi_{+}^{*}(r)$, and $\psi_{-}^{*}(r)$.

$$\frac{\partial^2 \psi_+^*(r)}{\partial r^2} - \frac{\Sigma_t}{\mu_+^2} \Big(\Sigma_t - \Sigma_s - \chi \nu \Sigma_f \Big) \psi_+^*(r) = 0$$

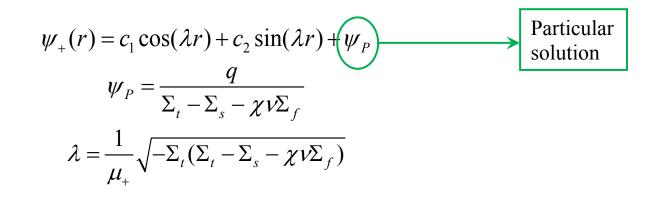
UNCLASSIFIED

Slide 5 of 19

Solution of Coupled Partial Differential Equations Step 2: Solve Second-Order Ordinary Differential Equations

$$\frac{\partial^2 \psi_+(r)}{\partial r^2} - \frac{\Sigma_t}{\mu_+^2} \Big(\Sigma_t - \Sigma_s - \chi \nu \Sigma_f \Big) \psi_+(r) = -\frac{\Sigma_t}{\mu_+^2} q$$

• The right-going forward flux is



- The negative sign precedes the first Σ_t because, for this problem, the term in the parentheses is negative.
- The trigonometric solution accounts for the imaginary roots of the characteristic equation.

UNCLASSIFIED

Slide 6 of 19

Solution of Coupled Partial Differential Equations Step 3: Apply Boundary Conditions

• Evaluate
$$\mu_+ \frac{\partial \psi_+(r)}{\partial r} + \Sigma_t \psi_+(r) - \frac{1}{2} \Sigma_s(\psi_+(r) + \psi_-(r)) - \frac{1}{2} \chi v \Sigma_f(\psi_+(r) + \psi_-(r)) = q$$

with $\psi_{+}(r) = c_{1}\cos(\lambda r) + c_{2}\sin(\lambda r) + \psi_{P}$ at $r = \frac{1}{2}r_{d}$ (the right boundary), using $\psi_{-}(\frac{1}{2}r_{d}) = 0$.

• The result is

$$\begin{bmatrix} -\mu_{+}\lambda\sin(\frac{1}{2}\lambda r_{d}) + (\Sigma_{t} - \frac{1}{2}\Sigma_{s} - \frac{1}{2}\chi v\Sigma_{f})\cos(\frac{1}{2}\lambda r_{d}) & \mu_{+}\lambda\cos(\frac{1}{2}\lambda r_{d}) + (\Sigma_{t} - \frac{1}{2}\Sigma_{s} - \frac{1}{2}\chi v\Sigma_{f})\sin(\frac{1}{2}\lambda r_{d}) \\ \cos(\frac{1}{2}\lambda r_{d}) & -\sin(\frac{1}{2}\lambda r_{d}) \end{bmatrix} \times \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} -(\Sigma_{t} - \frac{1}{2}\Sigma_{s} - \frac{1}{2}\chi v\Sigma_{f})\psi_{P} + q \\ -\psi_{P} \end{bmatrix}$$

• The solution is

$$c_{1} = \frac{\psi_{P}}{D} \Big(\Sigma_{t} \sin(\frac{1}{2}\lambda r_{d}) + \mu_{+}\lambda \cos(\frac{1}{2}\lambda r_{d}) \Big)$$

$$c_{2} = \frac{\psi_{P}}{D} \Big[\mu_{+}\lambda \sin(\frac{1}{2}\lambda r_{d}) - (\Sigma_{t} - \Sigma_{s} - \chi v \Sigma_{f}) \cos(\frac{1}{2}\lambda r_{d}) \Big]$$

$$D = -\mu_{+}\lambda \cos(\lambda r_{d}) - (\Sigma_{t} - \frac{1}{2}\Sigma_{s} - \frac{1}{2}\chi v \Sigma_{f}) \sin(\lambda r_{d})$$

UNCLASSIFIED

Slide 7 of 19

Solution

 $\psi_{+}(r) = c_{1}\cos(\lambda r) + c_{2}\sin(\lambda r) + \psi_{P}$ $\psi_{-}(r) = c_{1}\cos(\lambda r) - c_{2}\sin(\lambda r) + \psi_{P}$ $\psi_{+}^{*}(r) = c_{3}\cos(\lambda r) + c_{4}\sin(\lambda r)$ $\psi_{-}^{*}(r) = c_{5}\cos(\lambda r) + c_{6}\sin(\lambda r)$

• The forward and adjoint scalar fluxes are

$$\phi(r) = \frac{1}{2} (\psi_+(r) + \psi_-(r))$$
$$= c_1 \cos(\lambda r) + \psi_P$$

$$\phi^{*}(r) = \frac{1}{2} \left(\psi_{+}^{*}(r) + \psi_{-}^{*}(r) \right)$$

= $\frac{1}{2} \left((c_{3} + c_{5}) \cos(\lambda r) + (c_{4} + c_{6}) \sin(\lambda r) \right)$

• The detector response is

$$R_1 = \frac{1}{2} \Sigma_d \mu_+ \psi_+ (\frac{1}{2} r_d)$$

= $\frac{1}{2} \Sigma_d \mu_+ (c_1 \cos(\frac{1}{2} \lambda r_d) + c_2 \sin(\frac{1}{2} \lambda r_d) + \psi_P)$

UNCLASSIFIED

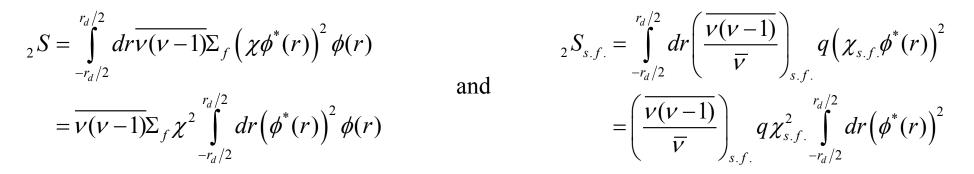
Slide 8 of 19

The Second Moment

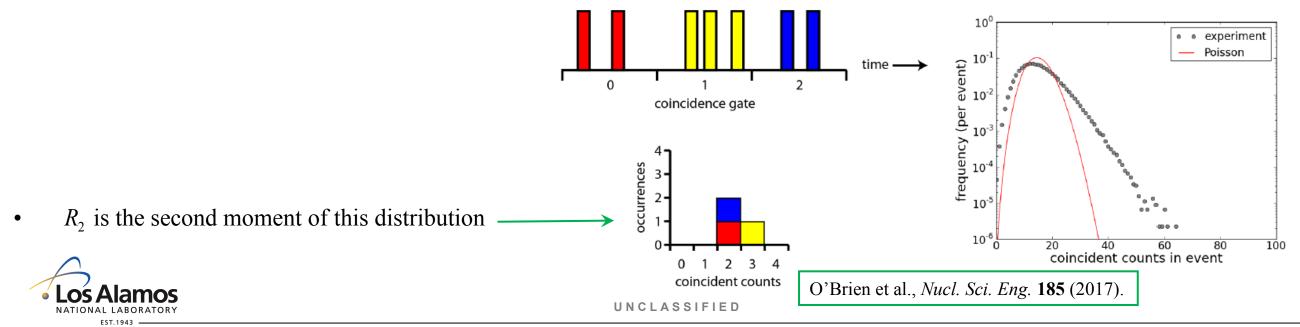
• The second moment R_2 of the count rate distribution is

$$R_2 = {}_2S + {}_2S_{s.f.},$$

where



• χ is the material induced-fission spectrum and $\chi_{s,f}$ is the material spontaneous-fission spectrum.



Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Slide 9 of 19

The Second Moment (cont.)

• Using PARTISN, a vector χ , and the Nuclear Data Interface (NDI) at LANL, the induced-fission spectrum is defined for mixtures (in a one-group problem) as

$$\chi = \frac{\sum_{i=1}^{I} \chi_i v \sigma_{f,i} N_i f_i}{\sum_{i=1}^{I} v \sigma_{f,i} N_i f_i},$$

where f_i is the spectrum weighting function and I is the number of fissionable isotopes.

- + If the NDI is not used or if a matrix χ is used, $f_i = 1$.
- For the one-group problem, $\chi_{s,f} = 1$.

• \overline{v} and $\overline{v(v-1)}$ are the first and second factorial moments of the fission multiplicity distributions. These are isotopic nuclear data. The products $\overline{v(v-1)}\Sigma_f$ and $(\overline{v(v-1)}/\overline{v})_{s,f}q$ are defined for mixtures as

$$\overline{\nu(\nu-1)}\Sigma_f = \sum_{i=1}^I N_i \overline{\nu(\nu-1)}_i \sigma_{f,i}$$

and

$$\left(\frac{\overline{\nu(\nu-1)}}{\overline{\nu}}\right)_{s.f.} q = \sum_{i=1}^{I} N_i \left(\frac{\overline{\nu(\nu-1)}}{\overline{\nu}}\right)_{s.f.i} q_i.$$

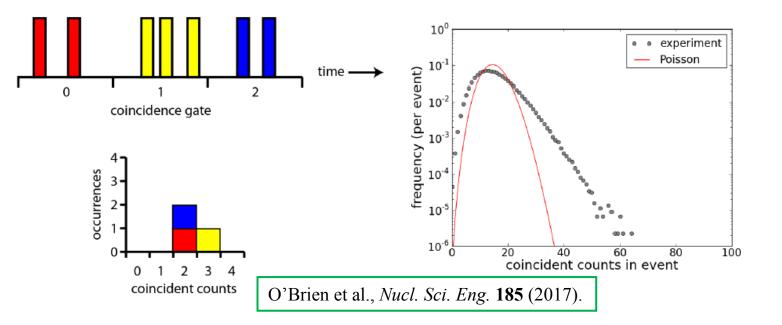
• Only isotopes with data for the moments will contribute to the material quantities $\overline{v(v-1)}\Sigma_f$ and $(\overline{v(v-1)}/\overline{v})_{s.f.}q$. • Los Alamos

UNCLASSIFIED

Feynman Y

• The Feynman *Y* asymptote is

- $Y = \frac{R_2}{R_1}.$
- A measure of the variance in the neutron multiplicity counting distribution in excess of the variance in a Poisson distribution.



• The width of the distribution in excess of the Poisson distribution is characteristic of multiplying material.

UNCLASSIFIED

Slide 11 of 19

Flux Functionals

• The volume integral of the square of the adjoint scalar flux is

$$\int_{-r_d/2}^{r_d/2} dr \left(\phi^*(r)\right)^2 = \frac{1}{8\lambda} \Big[(c_3 + c_5)^2 \left(\lambda r_d + \sin(\lambda r_d)\right) + (c_4 + c_6)^2 \left(\lambda r_d - \sin(\lambda r_d)\right) \Big]$$

• The volume integral of the square of the adjoint scalar flux multiplied by the forward scalar flux is

$$\int_{-r_d/2}^{r_d/2} dr \left(\phi^*(r)\right)^2 \phi(r) = \frac{c_1}{6\lambda} \left[\frac{1}{4} (c_3 + c_5)^2 \left(9\sin(\frac{1}{2}\lambda r_d) + \sin(\frac{3}{2}\lambda r_d)\right) + (c_4 + c_6)^2 \sin^3(\frac{1}{2}\lambda r_d) \right]$$

+ $\psi_P \int_{-r_d/2}^{r_d/2} dr \left(\phi^*(r)\right)^2$

UNCLASSIFIED

Slide 12 of 19

Derivatives with Respect to an Arbitrary Input Parameter (Material Property)

$$\cdot \frac{\partial \psi_P}{\partial \alpha_x} = \frac{\psi_P}{q} \frac{\partial q}{\partial \alpha_x} - \frac{\psi_P}{\Sigma_t - \Sigma_s - \chi v \Sigma_f} \frac{\partial (\Sigma_t - \Sigma_s - \chi v \Sigma_f)}{\partial \alpha_x}$$

$$\cdot \frac{\partial \lambda}{\partial \alpha_x} = \frac{\lambda}{2} \left(\frac{1}{\Sigma_t} \frac{\partial \Sigma_t}{\partial \alpha_x} + \frac{1}{(\Sigma_t - \Sigma_s - \chi v \Sigma_f)} \frac{\partial (\Sigma_t - \Sigma_s - \chi v \Sigma_f)}{\partial \alpha_x} \right), \quad \frac{\partial}{\partial \alpha_x} \left(\frac{1}{\lambda} \right) = -\frac{1}{\lambda^2} \frac{\partial \lambda}{\partial \alpha_x}$$

$$\cdot \frac{\partial c_1}{\partial \alpha_x} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \frac{\partial \Sigma_t}{\partial \alpha_x} = \frac{\partial \Sigma_t}{\partial \alpha_x} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \frac{\partial \Sigma_t}{\partial \alpha_x} = \frac{\partial \Sigma_t}{\partial \alpha_x} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \frac{\partial \Sigma_t}{\partial \alpha_x} = \frac{\partial \Sigma_t}{\partial \alpha_x} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \frac{\partial \Sigma_t}{\partial \alpha_x} = \frac{\partial \Sigma_t}{\partial \alpha_x} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda^2} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial D}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^2} \left(\frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{\lambda} \frac{\partial \psi_P}{\partial \alpha_x} \right) = \frac{\psi_P}{\lambda^$$

•
$$\frac{\partial c_1}{\partial \alpha_x} = \left(\frac{1}{\psi_P}\frac{\partial \psi_P}{\partial \alpha_x} - \frac{1}{D}\frac{\partial D}{\partial \alpha_x}\right)c_1 + \frac{\psi_P}{D_{(12)}}\frac{\partial \Sigma_t}{\partial \alpha_x}\sin(\frac{1}{2}\lambda r_d) + \frac{\psi_P}{D}\left[\left(\frac{\Sigma_t r_d}{2} + \mu_+\right)\cos(\frac{1}{2}\lambda r_d) - \frac{\mu_+\lambda r_d}{2}\sin(\frac{1}{2}\lambda r_d)\right]\frac{\partial \lambda}{\partial \alpha_x}$$

• etc.

•
$$\frac{\partial R_1}{\partial \alpha_x} = \frac{1}{2} \Sigma_d \mu_+ \left[\frac{\partial c_1}{\partial \alpha_x} \cos(\frac{1}{2}\lambda r_d) + \frac{\partial c_2}{\partial \alpha_x} \sin(\frac{1}{2}\lambda r_d) + \frac{\partial \psi_P}{\partial \alpha_x} + \frac{r_d}{2} \left(c_2 \cos(\frac{1}{2}\lambda r_d) - c_1 \sin(\frac{1}{2}\lambda r_d) \right) \frac{\partial \lambda}{\partial \alpha_x} \right]$$

•
$$\frac{\partial Y}{\partial \alpha_x} = \frac{1}{R_1} \left(\frac{\partial_2 S}{\partial \alpha_x} + \frac{\partial_2 S_{s.f.}}{\partial \alpha_x} - Y \frac{\partial R_1}{\partial \alpha_x} \right)$$

UNCLASSIFIED

Slide 13 of 19

Derivatives with Respect to the Slab Width

- $\frac{\partial \psi_P}{\partial r_d} = 0, \ \frac{\partial \lambda}{\partial r_d} = 0$
- $\frac{\partial c_1}{\partial r_d} = -\frac{c_1}{D}\frac{\partial D}{\partial r_d} + \frac{\psi_P \lambda}{2D} \left(\Sigma_t \cos(\frac{1}{2}\lambda r_d) \mu_+ \lambda \sin(\frac{1}{2}\lambda r_d) \right)$
- etc.

•
$$\frac{\partial R_1}{\partial r_d} = \frac{1}{2} \Sigma_d \mu_+ \left[\frac{\partial c_1}{\partial r_d} \cos(\frac{1}{2}\lambda r_d) + \frac{\partial c_2}{\partial r_d} \sin(\frac{1}{2}\lambda r_d) + \frac{\lambda}{2} \left(c_2 \cos(\frac{1}{2}\lambda r_d) - c_1 \sin(\frac{1}{2}\lambda r_d) \right) \right]$$

• $\frac{\partial Y}{\partial r_d} = \frac{1}{R_1} \left(\frac{\partial_2 S}{\partial r_d} + \frac{\partial_2 S_{s.f.}}{\partial r_d} - Y \frac{\partial R_1}{\partial r_d} \right)$

UNCLASSIFIED

Slide 14 of 19

Test Problem

• Material is plutonium with density 14 g/cm^3

Nuclide	Density	Weight
Inucliue	[atoms/(b·cm)]	Fraction
Pu-239	0.03385770516	0.96
Pu-240	0.001404851530	0.04

Nuclide

Pu-239

Pu-240

- Slab width = 4 cm
- Neutron source rates:

+ Total neutron source rate density is q = 585.3096779 neutrons/cm³·s

- 618-group MENDF71X collapsed to 1 energy group
- PARTISN (discrete-ordinates) parameters: 0.0005-cm mesh; *P*₀ scattering expansion
- First and second factorial moments of the multiplicity:
- Regular S_2 ordinates $\mu_{\pm} = \pm 1/\sqrt{3}$
- Response function $\Sigma_d = 0.009875877948$

Event	\overline{V}	$\overline{\nu(\nu-1)}$
Thermal fission of ²³⁹ Pu	2.8794	6.7728
Spontaneous fission of ²⁴⁰ Pu	2.1563	3.8242

J. W. Boldeman and M. G. Hines, "Prompt Neutron Emission Probabilities Following Spontaneous and Thermal Neutron Fission," *Nucl. Sci. Eng.*, **91**, 114–116 (1985).

UNCLASSIFIED

Neutrons/s/ (10^{24} atoms)

5.90346862E+00

4.16492268E+05

Slide 15 of 19

Responses

Response	Analytic	SENSMG	Difference
R_1	1.57256464E+02	1.572564E+02	-0.00001%
R_2	7.54409818E+02	7.544096E+02	-0.00003%
Y	4.79732153E+00	4.797320E+00	-0.00002%

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Slide 16 of 19

Sensitivity with Respect to the Pu-240 Induced-Fission Spectrum

- PARTISN constructs the material induced-fission spectrum χ using $\chi = \frac{\chi_{Pu239} v \sigma_{f,Pu239} N_{Pu239} f_{Pu239} + \chi_{Pu240} v \sigma_{f,Pu240} N_{Pu240} f_{Pu240}}{v \sigma_{f,Pu239} N_{Pu239} f_{Pu239} + v \sigma_{f,Pu240} N_{Pu240} f_{Pu240}}$.
- The unnormalized derivative of χ with respect to the Pu-240 fission spectrum is $\frac{\partial \chi}{\partial \chi_{Pu240}} = \frac{v\sigma_{f,Pu240}N_{Pu240}f_{Pu240}}{v\sigma_{f,Pu239}N_{Pu239}f_{Pu239} + v\sigma_{f,Pu240}N_{Pu240}f_{Pu240}}$.

•
$$\frac{\partial_2 S_{s.f.}}{\partial \chi_{\text{Pu}240}} = \left(\frac{\overline{\nu(\nu-1)}}{\overline{\nu}}\right)_{s.f.} q \chi_{s.f.}^2 \frac{\partial}{\partial \chi_{\text{Pu}240}} \int_{-r_d/2}^{r_d/2} dr \left(\phi^*(r)\right)^2$$

•
$$\frac{\partial_2 S}{\partial \chi_{\text{Pu}240}} = \overline{\nu(\nu-1)} \Sigma_f \left(2\chi \frac{\partial \chi}{\partial \chi_{\text{Pu}240}} \int_{-r_d/2}^{r_d/2} dr \left(\phi^*(r)\right)^2 \phi(r) + \chi^2 \frac{\partial}{\partial \chi_{\text{Pu}240}} \int_{-r_d/2}^{r_d/2} dr \left(\phi^*(r)\right)^2 \phi(r) \right)$$

(a) Unconstrained.

Sensitivity ^(a)	Analytic	SENSMG	Difference
$S_{R_{ m l},\chi_{ m Pu240}}$	1.879239E-01	1.879239E-01	0.00000%
$S_{R_2,\chi_{\mathrm{Pu}240}}$	5.736636E-01	5.736636E-01	-0.00001%
$S_{_{Y,\chi_{\operatorname{Pu}240}}}$	3.857397E-01	3.857397E-01	-0.00001%

UNCLASSIFIED

Slide 17 of 19

• An equation for the adjoint-based derivative of the Feynman *Y* to interface locations and the outer boundary has yet to be derived formally.

• SENSMG uses a straightforward extension of the equation for the derivative of the mean count rate R_{1} ,^{d,e}

$$\frac{\partial R_1}{\partial r_n} = \int_{S_n} dS \int_{4\pi} d\hat{\Omega} \sum_{g=1}^G \left\{ \psi^{*g}(r, \hat{\Omega}) \Delta Q_n + \psi^{*g}(r, \hat{\Omega}) \left(\Delta F_n - \Delta A_n \right) \psi^g(r, \hat{\Omega}) \right\},$$

where the Δ terms are differences across surface S_n .

Sensitivity	Analytic	SENSMG	Difference
$\partial R_1 / \partial r_d$	7.688378E+02	7.688377E+02	-0.00002%
$\partial R_2 / \partial r_d$	1.091584E+04	1.091583E+04	-0.00008%
$\partial Y / \partial r_d$	4.595981E+01	4.595979E+01	-0.00004%

^e J. A. FAVORITE and E. GONZALEZ, "Revisiting Boundary Perturbation Theory for Inhomogeneous Transport Problems," *Nucl. Sci. Eng.*, **185**, *3*, 445–459 (2017); https://doi.org/10.1080/00295639.2016.1277108.

UNCLASSIFIED

Slide 18 of 19

^d K. C. BLEDSOE, J. A. FAVORITE, and T. ALDEMIR, "Using the Levenberg-Marquardt Method for Solutions of Inverse Transport Problems in One- and Two-Dimensional Geometries," *Nuclear Technology*, **176**, *1*, 106–126 (2011); https://doi.org/10.13182/NT176-106.

Summary and Conclusions

- The S_2 slab or "rod" problem has been applied to verify the adjoint-based derivatives of R_1 and R_2 , the first and second moments of the neutron multiplicity counting distribution
- Keep this analytic problem in mind!
- Ganapol has published the solution of the rod problem in arbitrary groups (G > 1).^f
 - + I wanted to use Ganapol's solution, but I couldn't figure out how to take analytic derivatives.
 - + An exercise for a student....

Annals of Nuclear Energy 38 (2011) 2017-2023

An analytical multigroup benchmark for (n, γ) and (n, n', γ) verification of diffusion theory algorithms

B.D. Ganapol Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA

- The rod problem helped us figure out what to do about adjoint-based derivatives with respect to χ .
- The rod problem verified our derivatives with respect to outer boundary.

^f B. D. GANAPOL, "An Analytical Multigroup Benchmark for (n,γ) and (n,n',γ) Verification of Diffusion Theory Algorithms," *Ann. Nucl. Eng.*, **38**, 2017–2023 (2011); https://doi.org/10.1016/j.anucene.2011.04.013.

UNCLASSIFIED

Slide 19 of 19