Differences in the Use of Nuclide χ Vectors Demonstrated with an Analytic k_{∞} Problem

Jeffrey A. Favorite Radiation Transport Applications Group (XCP-7) Los Alamos National Laboratory

2019 American Nuclear Society Winter Meeting Washington, DC November17–21, 2019

UNCLASSIFIED

Slide 1 of 24

Consider this k_{∞} **Problem**

• Material is plutonium with density 14 g/cm³

Nuclida	Density	Weight
Inucliue	[atoms/(b·cm)]	Fraction
Pu-239	0.03385770516	0.96
Pu-240	0.001404851530	0.04

- Geometry is a slab with width 1 cm
- 618-group MENDF71X collapsed to 8 energy groups
- PARTISN (discrete-ordinates) parameters: 0.0005-cm mesh; S_{256} ; P_0 scattering expansion
- Nuclide cross sections were put in ACE format using the simple_ace_mg.pl utility
- MCNP parameters: 6,400,000 neutrons/cycle, 1000 active cycles (100 inactive)

Results for k_{∞}				
Code	k_{∞}			
PARTISN	2.9445993			
MCNP6.2	2.94461 ± 0.00001			

UNCLASSIFIED

Slide 2 of 24

Consider this k_{∞} **Problem**

• Material is plutonium with density 14 g/cm³

Nuclide	Density	Weight
Inucliuc	[atoms/(b·cm)]	Fraction
Pu-239	0.03385770516	0.96
Pu-240	0.001404851530	0.04

- Geometry is a slab with width 1 cm
- 618-group MENDF71X collapsed to 8 energy groups
- PARTISN (discrete-ordinates) parameters: 0.0005-cm mesh; S_{256} ; P_0 scattering expansion
- Nuclide cross sections were put in ACE format using the simple_ace_mg.pl utility
- MCNP parameters: 6,400,000 neutrons/cycle, 1000 active cycles (100 inactive)

Results for	k_{∞}
Code	k_{∞}
PARTISN	2.9445993
MCNP6.2	2.94461 ± 0.00001
[Basically the same k_{∞}
SAlamos	

Results for $S_{k_{\infty}, \chi^{1}_{Pu240}}$				
Code	$S_{k_\infty,\chi^1_{\mathrm{Pu}240}}$			
PARTISN	7.442050E-07			
MCNP6.2	$2.7656\text{E-06} \pm 1.50$ %			
	S is $3.7 \times \text{different}$			

UNCLASSIFIED

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Slide 3 of 24

• Homogeneous material, isotropic scattering, multigroup transport equation for k_{∞} :

$$\left(\overline{\overline{\Sigma_t}} - \overline{\overline{\Sigma_s}}\right)\overline{\phi} = \frac{1}{k_{\infty}}\overline{\chi}\overline{\nu\Sigma_f}^T\overline{\phi},$$

where

- + $\overline{\nu\Sigma_f}$ is the vector of material $\nu\Sigma_f^g$ cross sections;
- + $\overline{\Sigma_t}$ is the diagonal matrix of material Σ_t^g cross sections;
- + $\overline{\Sigma_s}$ is the matrix of material group-to-group scattering cross sections;
- + $\overline{\chi}$ is the vector of material fission χ^g elements;
- + superscript *T* indicates transpose.
- The solution for k_{∞} is^a

$$k_{\infty} = \overline{\nu \Sigma_f}^T \left(\overline{\overline{\Sigma_t}} - \overline{\overline{\Sigma_s}}\right)^{-1} \overline{\chi}$$

UNCLASSIFIED

Slide 4 of 24

^a A. SOOD, R. A. FORSTER, and D. K. PARSONS, "Analytical Benchmark Test Set for Criticality Code Verification," *Prog. Nucl. Energy*, **42**, *1*, 55–106 (2003); https://doi.org/10.1016/S0149-1970(02)00098-7.

• The material fission $\overline{\chi}$ vector is composed of elements χ^g computed from the isotopic fission vectors $\overline{\chi_i}$ with elements χ_i^g using

$$\chi^{g} = \frac{\sum_{i=1}^{I} \chi^{g}_{i} N_{i} \sum_{g'=1}^{G} v \sigma^{g'}_{f,i} f^{g'}_{i}}{\sum_{i=1}^{I} N_{i} \sum_{g'=1}^{G} v \sigma^{g'}_{f,i} f^{g'}_{i}},$$

where $f_i^{g'}$ is the spectrum weighting function and *I* is the number of fissionable nuclides in the material.

- + The spectrum weighting function is only available through the Nuclear Data Interface (NDI) at LANL.
- + For other cross section libraries, the spectrum weighting function is 1.
- If there is only one fissionable nuclide in the material, $\chi^g = \chi_1^g$, as expected.
- If there is only one energy group, regardless of the number of nuclides, then $\chi^1 = \chi_i^1 = 1$, which is not an interesting case.
- The product $\overline{\chi} v \overline{\Sigma}_f^T$ is called the *fission transfer matrix*. When isotopic fission χ vectors are used to create a material fission χ vector, the fission transfer matrix is

$$\overline{\chi} \overline{\nu} \overline{\Sigma}_{f}^{T} = \begin{bmatrix} \chi^{1} \\ \chi^{2} \\ \vdots \\ \chi^{G} \end{bmatrix} \begin{bmatrix} \nu \Sigma_{f}^{1} & \nu \Sigma_{f}^{2} & \cdots & \nu \Sigma_{f}^{G} \end{bmatrix}$$

UNCLASSIFIED

Slide 5 of 24

Fission Transfer Matrix

UNCLASSIFIED

Slide 6 of 24

Sensitivities of k_{∞}

• The vector of partial derivatives of k_{∞} with respect to each element of $\overline{\chi}$ is $\overline{\frac{\partial k}{\partial x} - \overline{\chi}}^T \left(\overline{\Sigma} - \overline{\Sigma}\right)^{-1}$

$$\overline{\partial k_{\infty}/\partial \chi} = \overline{\nu \Sigma_f}^T \left(\overline{\overline{\Sigma_t}} - \overline{\overline{\Sigma_s}}\right)^{-1}.$$

• The derivative of χ^g with respect to χ_i^g for a particular nuclide is

$$\frac{\partial \chi^{g}}{\partial \chi^{g}_{i}} = \frac{N_{i} \sum_{g'=1}^{G} v \sigma^{g'}_{f,i} f^{g'}_{i}}{\sum_{i=1}^{I} N_{i} \sum_{g'=1}^{G} v \sigma^{g'}_{f,i} f^{g'}_{i}}.$$

• The unconstrained relative sensitivity of k_{∞} to χ_i^g is

$$S_{k_{\infty},\chi_{i}^{g}} \equiv \frac{\chi_{i}^{g}}{k_{\infty}} \frac{\partial k_{\infty}}{\partial \chi_{i}^{g}} = \frac{\chi_{i}^{g}}{k_{\infty}} \frac{\partial k_{\infty}}{\partial \chi^{g}} \frac{\partial \chi^{g}}{\partial \chi_{i}^{g}}.$$

• The constrained relative sensitivity of k_{∞} to χ_i^g , which accounts for the fact that changing one entry requires the others to change to preserve the normalization, is

$$S_{k_{\infty},\chi_{i}^{g}}^{FN} = S_{k_{\infty},\chi_{i}^{g}} - \chi_{i}^{g} \sum_{g=1}^{G} S_{k_{\infty},\chi_{i}^{g}}$$

where *FN* indicates full normalization.^b

^b J. A. FAVORITE, Z. PERKÓ, B. C. KIEDROWSKI, and C. M. PERFETTI, "Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User's Guide," *Nucl. Sci. Eng.*, **185**, *3*, 384–405 (2017); https://doi.org/10.1080/00295639.2016.1272990

UNCLASSIFIED

k_{∞} Using χ Matrix

• When the full matrix fission $\overline{\chi}$ is used, there is not a closed-form solution for k_{∞} . The multigroup transport equation for k_{∞} becomes

$$\left(\overline{\overline{\Sigma}_{t}}-\overline{\overline{\Sigma}_{s}}\right)\overline{\phi}=\frac{1}{k_{\infty}}\overline{\overline{\chi}}\,\overline{\nu\Sigma_{f}}\,\overline{\phi},$$

where $\overline{\nu \Sigma_f}$ is the diagonal matrix of material $\nu \Sigma_f^g$ cross sections.

• The equation is solved iteratively, starting with initial guesses for $\overline{\phi}$ and k_{∞} :

$$\overline{\phi}^{k+1} = \frac{1}{k_{\infty}^{k}} \left(\overline{\overline{\Sigma}_{t}} - \overline{\overline{\Sigma}_{s}}\right)^{-1} \overline{\chi} \overline{\nu} \overline{\Sigma}_{f} \overline{\phi}^{k},$$

(superscript k is the iteration index).

• At each iteration, the updated k_{∞}^{k+1} is computed using

$$k_{\infty} = \left[\overline{I}^{T}\left(\overline{\overline{\Sigma_{t}}} - \overline{\overline{\Sigma_{s}}}\right)\overline{\phi}\right]^{-1}\left[\overline{I}^{T}\overline{\overline{\chi}}\overline{\overline{\nu}}\overline{\overline{\Sigma_{f}}}\overline{\phi}\right],$$

where \overline{I} is a vector whose elements are all unity.

UNCLASSIFIED

Slide 8 of 24

Material Fission χ Matrix $\chi^{g' \rightarrow g}$

• The material $\chi^{g' \to g}$ is computed from the isotopic $\chi_i^{g' \to g}$ values using $\chi^{g' \to g} = \frac{\sum_{i=1}^{I} \chi_i^{g' \to g} N_i v \sigma_{f,i}^{g'}}{\sum_{i=1}^{I} N_i v \sigma_{f,i}^{g'}} = \frac{\sum_{i=1}^{I} \chi_i^{g' \to g} N_i v \sigma_{f,i}^{g'}}{v \Sigma_f^{g'}}.$

(Note that this does not have the spectrum weighting function $f_i^{g'}$.)

- If there is only one fissionable nuclide in the material, $\chi^{g' \to g} = \chi_1^{g' \to g}$, as expected.
- If there is only one energy group, regardless of the number of nuclides, then $\chi^{1 \to 1} = \chi_i^{1 \to 1} = 1$, again not an interesting case.
- When isotopic fission χ matrices are used to create a material fission χ matrix, the fission transfer matrix is

$$= \overline{\chi} \overline{\nu} \overline{\Sigma}_{f} = \begin{bmatrix} \chi^{1 \to 1} & \chi^{2 \to 1} & \cdots & \chi^{G \to 1} \\ \chi^{1 \to 2} & \chi^{2 \to 2} & \cdots & \chi^{G \to 2} \\ \vdots & \vdots & \ddots & \vdots \\ \chi^{1 \to G} & \chi^{2 \to G} & \cdots & \chi^{G \to G} \end{bmatrix} \begin{bmatrix} \nu \Sigma_{f}^{1} & 0 & \cdots & 0 \\ 0 & \nu \Sigma_{f}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \nu \Sigma_{f}^{G} \end{bmatrix}$$

UNCLASSIFIED

Slide 9 of 24

$$\begin{split} \overline{\chi} \overline{\nu\Sigma_{f}} &= \begin{bmatrix} \chi^{1 \to 1} & \chi^{2 \to 1} & \cdots & \chi^{G \to 1} \\ \chi^{1 \to 2} & \chi^{2 \to 2} & \cdots & \chi^{G \to 2} \\ \vdots & \vdots & \ddots & \vdots \\ \chi^{1 \to G} & \chi^{2 \to G} & \cdots & \chi^{G \to G} \end{bmatrix} \begin{bmatrix} \nu\Sigma_{f}^{1} & 0 & \cdots & 0 \\ 0 & \nu\Sigma_{f}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \nu\Sigma_{f}^{G} \end{bmatrix} \\ &= \begin{bmatrix} \chi^{1 \to 1} \nu\Sigma_{f}^{1} & \chi^{2 \to 1} \nu\Sigma_{f}^{2} & \cdots & \chi^{G \to 1} \nu\Sigma_{f}^{G} \\ \chi^{1 \to 2} \nu\Sigma_{f}^{1} & \chi^{2 \to 2} \nu\Sigma_{f}^{2} & \cdots & \chi^{G \to 2} \nu\Sigma_{f}^{G} \\ \vdots & \vdots & \ddots & \vdots \\ \chi^{1 \to G} \nu\Sigma_{f}^{1} & \chi^{2 \to G} \nu\Sigma_{f}^{2} & \cdots & \chi^{G \to G} \nu\Sigma_{f}^{G} \end{bmatrix} \\ &= \begin{bmatrix} \sum_{i=1}^{I} \chi_{i}^{1 \to 1} N_{i} \nu \sigma_{f,i}^{1} & \sum_{i=1}^{I} \chi_{i}^{2 \to 1} N_{i} \nu \sigma_{f,i}^{2} & \cdots & \sum_{i=1}^{I} \chi_{i}^{G \to 1} N_{i} \nu \sigma_{f,i}^{G} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{I} \chi_{i}^{1 \to 2} N_{i} \nu \sigma_{f,i}^{1} & \sum_{i=1}^{I} \chi_{i}^{2 \to 2} N_{i} \nu \sigma_{f,i}^{2} & \cdots & \sum_{i=1}^{I} \chi_{i}^{G \to 2} N_{i} \nu \sigma_{f,i}^{G} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{I} \chi_{i}^{1 \to G} N_{i} \nu \sigma_{f,i}^{1} & \sum_{i=1}^{I} \chi_{i}^{2 \to G} N_{i} \nu \sigma_{f,i}^{2} & \cdots & \sum_{i=1}^{I} \chi_{i}^{G \to G} N_{i} \nu \sigma_{f,i}^{G} \end{bmatrix}$$

UNCLASSIFIED

Slide 10 of 24

If Only the Vector χ Is Available for Each Nuclide

• The elements of each isotopic fission χ matrix $\overline{\chi_i}$ are

$$= \chi_i^{1 \to 1} \qquad \chi_i^{2 \to 1} \qquad \cdots \qquad \chi_i^{G \to 1} \\ \chi_i^{1 \to 2} \qquad \chi_i^{2 \to 2} \qquad \cdots \qquad \chi_i^{G \to 2} \\ \vdots \qquad \vdots \qquad \ddots \qquad \vdots \\ \chi_i^{1 \to G} \qquad \chi_i^{2 \to G} \qquad \cdots \qquad \chi_i^{G \to G} \end{bmatrix}.$$

- However, if only the vector $\overline{\chi_i}$ is available for each nuclide, then every group g' has the same contribution to group g.
- The elements of $\overline{\chi_i}$ become

$$= \begin{bmatrix} \chi_i^{1 \to 1} & \chi_i^{1 \to 1} & \cdots & \chi_i^{1 \to 1} \\ \chi_i^{2 \to 2} & \chi_i^{2 \to 2} & \cdots & \chi_i^{2 \to 2} \\ \vdots & \vdots & \ddots & \vdots \\ \chi_i^{G \to G} & \chi_i^{G \to G} & \cdots & \chi_i^{G \to G} \end{bmatrix} = \begin{bmatrix} \chi_i^1 & \chi_i^1 & \cdots & \chi_i^1 \\ \chi_i^2 & \chi_i^2 & \cdots & \chi_i^2 \\ \vdots & \vdots & \ddots & \vdots \\ \chi_i^G & \chi_i^G & \cdots & \chi_i^G \end{bmatrix}.$$

UNCLASSIFIED

Slide 11 of 24

If Only the Vector *χ* Is Available for Each Nuclide (cont.)

Using $\chi^{g' \to g} = \frac{\sum_{i=1}^{i} \chi_i^{g' \to g} N_i v \sigma_{f,i}^{g'}}{v \Sigma_{c}^{g'}}$, the material χ matrix is $= \frac{\left[\begin{array}{cccc} \sum_{i=1}^{I} \chi_{i}^{1} N_{i} v \sigma_{f,i}^{1} & \frac{\sum_{i=1}^{I} \chi_{i}^{1} N_{i} v \sigma_{f,i}^{2}}{v \Sigma_{f}^{2}} & \cdots & \frac{\sum_{i=1}^{I} \chi_{i}^{1} N_{i} v \sigma_{f,i}^{G}}{v \Sigma_{f}^{G}}\right]}{\sum_{i=1}^{I} \chi_{i}^{2} N_{i} v \sigma_{f,i}^{1}} & \frac{\sum_{i=1}^{I} \chi_{i}^{2} N_{i} v \sigma_{f,i}^{2}}{v \Sigma_{f}^{2}} & \cdots & \frac{\sum_{i=1}^{I} \chi_{i}^{2} N_{i} v \sigma_{f,i}^{G}}{v \Sigma_{f}^{G}}\right]$ $\begin{bmatrix} \sum_{i=1}^{I} \chi_i^G N_i v \sigma_{f,i}^1 \\ \frac{\sum_{i=1}^{I} \chi_i^G N_i v \sigma_{f,i}^1}{v \Sigma_i^1} \\ \frac{\sum_{i=1}^{I} \chi_i^G N_i v \sigma_{f,i}^2}{v \Sigma_i^2} \\ \frac{\sum_{i=1}^{I} \chi_i^G N_i v \sigma_{f,i}^2}{v \Sigma_i^2} \\ \frac{\sum_{i=1}^{I} \chi_i^G N_i v \sigma_{f,i}^G}{v \Sigma_i^G} \\ \frac{\sum_{i=1}^{I} \chi_i^G N_i v \sigma_{i}^G}{v \Sigma_i^G} \\ \frac{\sum_{i=1}^$

• In general, the columns of $\overline{\chi}$ are not the same, unlike the columns of $\overline{\chi_i}$.

• Thus, even though only χ vectors for isotopes may be given, a material χ matrix may result, depending on assumptions or conventions.

NATIONAL LABORATORY EST. 1943 — Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos

UNCLASSIFIED

Slide 12 of 24

Sensitivities of k_{∞}

- There is no convenient expression for $\frac{\partial k_{\infty}}{\partial \chi^{g' \to g}}$.
- Sensitivities are calculated using direct perturbations in a central difference.
 - + Perturb χ_i^g to $\chi_i^g + \Delta \chi_i^g$; then, normalize every element of the perturbed $\overline{\chi_i}$. Solve for $k_{\infty,+}$ with the perturbed, renormalized $\overline{\chi_i}$.
 - + Do the same with the opposite perturbation $-\Delta \chi_i^g$ to compute $k_{\infty,-}$.
 - + The relative sensitivity is approximately

$$S_{k_{\infty},\chi_{i}^{g}}^{FN} \approx \frac{\chi_{i}^{g}}{k_{\infty}} \frac{k_{\infty,+} - k_{\infty,-}}{2\Delta\chi_{i}^{g}}$$

- + The accuracy depends on the linearity of the three points $(-\Delta \chi_i^g, k_{\infty,-}), (0, k_{\infty}), \text{ and } (\Delta \chi_i^g, k_{\infty,+}).$
- + Note that the central difference uses the input $\Delta \chi_i^g$ in the denominator, not the change in χ_i^g after the renormalization.

UNCLASSIFIED

Slide 13 of 24

• In multigroup or continuous-energy mode, MCNP first samples the neutron's distance to collision in the material, then samples what type of collision occurred.

• If it is fission, then it samples for the fissioning nuclide at incoming neutron energy g' using probabilities $N_i v \sigma_{f,i}^{g'} / v \Sigma_f^{g'}$, i = 1, ..., I, where *I* is the number of fissionable nuclides.

- Then it samples for the outgoing energy group g from that nuclide's χ vector (in multigroup).
- Given a fission event and incoming group g', then, the probability of choosing nuclide i and outgoing group g is $\chi_i^g N_i v \sigma_{f,i}^{g'} / v \Sigma_f^{g'}$.

 $\frac{\sum_{i=1}^{I} \chi_{i}^{1} N_{i} v \sigma_{f,i}^{1}}{v \Sigma_{f}^{1}} \quad \frac{\sum_{i=1}^{I} \chi_{i}^{1} N_{i} v \sigma_{f,i}^{2}}{v \Sigma_{f}^{2}} \quad \cdots \quad \frac{\sum_{i=1}^{I} \chi_{i}^{1} N_{i} v \sigma_{f,i}^{G}}{v \Sigma_{f}^{G}}$ The overall probability of choosing outgoing group g is the sum over all fissionable nuclides: $\sum_{i}^{i} \chi_{i}^{g} N_{i} \nu \sigma_{f,i}^{g'} / \nu \Sigma_{f}^{g'}.$ $\frac{\sum_{i=1}^{I} \chi_i^2 N_i v \sigma_{f,i}^1}{v \Sigma_{f}^1} \quad \frac{\sum_{i=1}^{I} \chi_i^2 N_i v \sigma_{f,i}^2}{v \Sigma_{f}^2} \quad \dots \quad \frac{\sum_{i=1}^{I} \chi_i^2 N_i v \sigma_{f,i}^G}{v \Sigma_{f}^6}$ each nuclide, the material χ matrix is $\chi =$ If only the vector χ is available for $\frac{\sum_{i=1}^{I} \chi_{i}^{G} N_{i} v \sigma_{f,i}^{1}}{v \Sigma_{f}^{1}} \quad \frac{\sum_{i=1}^{I} \chi_{i}^{G} N_{i} v \sigma_{f,i}^{2}}{v \Sigma_{f}^{2}} \quad \dots \quad \frac{\sum_{i=1}^{I} \chi_{i}^{G} N_{i} v \sigma_{f,i}^{G}}{v \Sigma_{f}^{G}}$ UNCLASSIFIED Slide 14 of 24

- PARTISN version 8 is now available from RSICC.
 - + Uses keyword fissdata in block 3 to specify whether to use a χ vector or matrix for all nuclides.
 - + Only useful at Los Alamos.
- For external users, PARTISN uses fission χ vectors.
- The material fission $\overline{\chi}$ vector is composed of elements χ^g computed from the isotopic fission vectors $\overline{\chi_i}$ with elements χ_i^g using

$$\chi^{g} = \frac{\sum_{i=1}^{I} \chi_{i}^{g} N_{i} \sum_{g'=1}^{G} v \sigma_{f,i}^{g'}}{\sum_{i=1}^{I} N_{i} \sum_{g'=1}^{G} v \sigma_{f,i}^{g'}}$$

UNCLASSIFIED

Slide 15 of 24

Main Conclusion

- Even when you input multigroup fission χ vectors for nuclides, MCNP uses a material fission χ matrix!
- If you compare with PARTISN or with analytic solutions and don't account for this, you will be surprised.

UNCLASSIFIED

Slide 16 of 24

Isn't this Obvious?

- None of the differences arise if:
 - + the test material has only one nuclide
 - + PARTISN uses a fission χ matrix
- The differences may be masked if different nuclear data are used in the comparison...
 - + Such as "continuous energy" vs. multigroup.
- Some combination of these probably explains why previous comparisons of Monte Carlo and deterministic sensitivities to χ did not seem to find this effect.

Progress in Nuclear Energy, Vol. 42, No. 1, pp. 55-106, 2003 Published by Elsevier Science Ltd Pergamor Available online at www.sciencedirect.com Printed in Great Britain -----0149-1970/03/\$ - see front matter www.elsevier.com/locate/pnucene PII: S0149-1970(02)00098-7

Analytical Benchmark Test Set For Criticality Code Verification

Avneet Sood, R. Arthur Forster, and D. Kent Parsons

Los Alamos National Laboratory, Applied Physics (X) Division, X-5 Diagnostics Applications Group, P.O. Box 1663, MS F663, Los Alamos, NM 87545

Abstract

A number of published numerical solutions to analytic eigenvalue (k_{eff}) and eigenfunction equations are summarized for the purpose of creating a criticality verification benchmark test set. The 75-problem test set allows the user to verify the correctness of a criticality code for infinite medium and simple geometries in one-

5.2.2 Two-Group U-D₂O Reactor.

Two-Group Anisotropic Macroscopic Cross Sections

Tables 53 and 54 gives the two-group, linearly anisotropic cross sections for the U-D₂O system.

Table 53

Fast Energy Group Cross Sections for Linearly Anisotropic Scattering (cm $^{-1})$ for U-D₂O

Material	ν_2	Σ_{2f}	Σ_{2c}	Σ_{22s_0}	Σ_{22s_1}	Σ_{12s_0}	Σ_{12s_1}	Σ_2	χ_2
D_2O	2.50	0.0028172	0.0087078	0.31980	0.06694	0.004555	-0.0003972	0.33588	1.0

Table 54

Slow Energy Group Cross Sections for Linearly Anisotropic Scattering (cm⁻¹) for U-D₂O

Material	ν_1	Σ_{1f}	Σ_{1c}	Σ_{11s_0}	Σ_{11s_1}	Σ_{21s}	Σ_1	χ1
D_2O	2.50	0.097	0.02518	0.42410	0.05439	0.0	0.54628	0.0

Infinite Medium (UD2O-2-1-IN)

The test set uses the two-group linearly anisotropic D_2O cross section set from Tables 53 and 54 with $k_{\infty} = 1.000227$ (problem 72) and the group 2 to group 1 flux

UNCLASSIFIED

Slide 17 of 24

Consider this k_{∞} **Problem**

• Material is plutonium with density 14 g/cm³

Nuclida	Density	Weight
Inucliuc	[atoms/(b·cm)]	Fraction
Pu-239	0.03385770516	0.96
Pu-240	0.001404851530	0.04

- Geometry is a slab with width 1 cm
- 618-group MENDF71X collapsed to 8 energy groups
- PARTISN (discrete-ordinates) parameters: 0.0005-cm mesh; S_{256} ; P_0 scattering expansion
- Nuclide cross sections were put in ACE format using the simple_ace_mg.pl utility
- MCNP parameters: 6,400,000 neutrons/cycle, 1000 active cycles (100 inactive)

Results for Code	k_{∞} k_{∞}
PARTISN	2.9445993
MCNP6.2	2.94461 ± 0.00001
]	Basically the same k_{∞}

UNCLASSIFIED

Did PARTISN use a χ vector or matrix?

If vector, was weighting function f_i^g used?

Slide 18 of 24

• Analytic

Equation	Value	Equation	Value
Vector, with f	2.94459933	Vector, $f = 1$	2.94460099
Matrix	2.94460193	Matrix	2.94460193
Difference	-0.00008814%	Difference	-0.00003192%

Difference =
$$\frac{\left(R_1 - R_2\right)}{\frac{1}{2}\left(R_1 + R_2\right)}$$

• All χ vector, deterministic

Calculation	Value	Difference
Analytic ^(a)	2.9445993	N/A
PARTISN	2.9445993	-0.000001%

(a) Using the actual spectrum weighting function.

• Isotopic χ vector, material χ matrix, Monte Carlo

Calculation	Value	Difference	Difference (Nσ)
Analytic	2.94460	N/A	N/A
MCNP	2.94461 ± 0.00001	0.000274%	0.81

UNCLASSIFIED

Slide 19 of 24

Analytic Sensitivities Compared

• Constrained Sensitivities of k_{∞} to χ , Analytic, Not Using the NDI Spectrum Weighting Function (Full Normalization) (%/%)

Isotope	Group	Vector $\chi, f = 1$	Matrix χ	Difference]
Pu-239	1	1.023819E-04	1.017157E-04	0.65285% ←	Using the spectrum
	2	1.033315E-03	1.026591E-03	0.65284%	weighting function,
	3	2.654926E-02	2.637802E-02	0.64707%	these go to 1.8%
	4	-1.119365E-02	-1.112195E-02	0.64257%	
	5	-1.031274E-02	-1.024650E-02	0.64446%	
	6	-5.565518E-03	-5.529357E-03	0.65186%	
	7	-5.786425E-04	-5.748772E-04	0.65283%	
	8	-3.440293E-05	-3.417906E-05	0.65285%	
Pu-240	1	2.037760E-06	2.762766E-06	-30.205% 🗲	Using the spectrum
	2	1.977692E-05	2.681326E-05	-30.205%	weighting function
	3	4.854356E-04	6.581838E-04	-30.211%	these go to -115%
	4	-2.050723E-04	-2.780627E-04	-30.215%	
	5	-1.891339E-04	-2.564481E-04	-30.214%	
	6	-1.018182E-04	-1.380452E-04	-30.206%	
	7	-1.059340E-05	-1.436239E-05	-30.205%	
	8	-6.323635E-07	-8.573494E-07	-30.205%	

UNCLASSIFIED

Slide 20 of 24

• Constrained Sensitivities of k_{∞} to χ , Deterministic Transport (Full Normalization) (%/%)

Isotope	Group	Analytic	SENSMG	Difference
Pu-239	1	1.035708E-04	1.035708E-04	-0.000035%
	2	1.045315E-03	1.045315E-03	0.000003%
	3	2.685757E-02	2.685757E-02	0.000011%
	4	-1.132364E-02	-1.132364E-02	0.000034%
	5	-1.043250E-02	-1.043250E-02	-0.000026%
	6	-5.630149E-03	-5.630149E-03	-0.000005%
	7	-5.853621E-04	-5.853621E-04	-0.000006%
	8	-3.480244E-05	-3.480244E-05	-0.00008%
Pu-240	1	7.442050E-07	7.442050E-07	0.000001%
	2	7.222675E-06	7.222675E-06	-0.000001%
	3	1.772846E-04	1.772846E-04	-0.000021%
	4	-7.489392E-05	-7.489392E-05	0.000000%
	5	-6.907309E-05	-6.907309E-05	-0.000005%
	6	-3.718477E-05	-3.718477E-05	-0.00002%
	7	-3.868789E-06	-3.868789E-06	0.000000%
	8	-2.309438E-07	-2.309438E-07	-0.00008%

UNCLASSIFIED

Slide 21 of 24

• Constrained Sensitivities of k_{∞} to χ , Monte Carlo Transport (Full Normalization) (%/%)

Isotope	Group	Analytic CD	KSEN	Difference	Difference
15000p•					$(N\sigma)$
Pu-239	1	1.01716E-04	$1.0212\text{E-}04 \pm 1.04\%$	0.3975%	0.38
	2	1.02659E-03	$1.0256\text{E-}03 \pm 0.33\%$	-0.0966%	-0.29
Pu-240	3	2.63780E-02	$2.6405 \text{E-}02 \pm 0.12\%$	0.1023%	0.85
	4	-1.11220E-02	-1.1145E-02 ± 0.31%	0.2072%	0.67
	5	-1.02465E-02	-1.0243E-02 ± 0.16%	-0.0341%	-0.21
	6	-5.52936E-03	$-5.5350\text{E-}03 \pm 0.16\%$	0.1021%	0.64
	7	-5.74877E-04	-5.7564 E-04 ± 0.29 %	0.1327%	0.46
	8	-3.41791E-05	$-3.3591\text{E-}05 \pm 1.14\%$	-1.7205%	-1.54
	1	2.76277E-06	$2.7656\text{E-}06 \pm 1.50\%$	0.1026%	0.07
	2	2.68133E-05	$2.6776\text{E-}05 \pm 0.44\%$	-0.1390%	-0.32
	3	6.58184E-04	$6.5929 \text{E-}04 \pm 0.19\%$	0.1681%	0.88
	4	-2.78063E-04	-2.7880 E-04 ± 0.48 %	0.2652%	0.55
	5	-2.56448E-04	-2.5651 E-04 ± 0.29 %	0.0241%	0.08
	6	-1.38045E-04	$-1.3822\text{E-}04 \pm 0.29\%$	0.1267%	0.44
	7	-1.43624E-05	-1.4478E-05 ± 0.62%	0.8050%	1.29
	8	-8.57349E-07	-8.3399E-07 ± 2.39%	-2.7246%	-1.17

UNCLASSIFIED

Slide 22 of 24

Main Conclusion

- Even when you input multigroup fission χ vectors for nuclides, MCNP uses a material fission χ matrix!
- If you compare with PARTISN or with analytic solutions and don't account for this, you will be surprised.

UNCLASSIFIED

Slide 23 of 24

- Even when you input multigroup fission χ vectors for nuclides, MCNP uses a material fission χ matrix!
- If you compare with PARTISN or with analytic solutions and don't account for this, you will be surprised.
- Accounting for this, we verified SENSMG and MCNP's KSEN.

UNCLASSIFIED

