

ANS Winter Meeting & Expo 2019 NUCLEAR TECHNOLOGY FOR THE U.S. AND THE WORLD

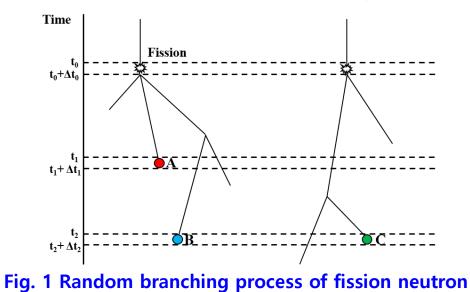
Subcriticality Measurement using Feynman-α with a Fully Random Sampling and Second-Order Filtering Technique for AGN-201K

Sungho Moon, Jong Hoon Kim, Myung Hyun Kim, Ser Gi Hong* Department of Nuclear Engineering, Kyung Hee University *Corresponding author : sergihong@khu.ac.kr

***** INTRODUCTION

- ***** THEORY AND METHOD
- **AGN-201K AND SUBCRITICAL STATES**
- **RESULTS AND DISCUSSION**
- CONCLUSION

INTRODUCTION

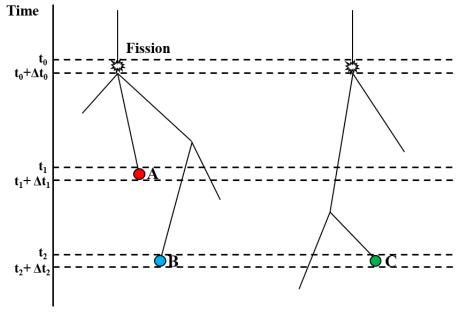

- Most nuclear facilities are designed to have conservative subcritical margin to prevent accidentally uncontrolled neutron multiplications.
- Therefore, an accurate real-time measurement of subcriticality can provide a helpful way to guarantee the safe operation of nuclear facilities.
- **Noise analysis methods have been studied for a long time for this purpose.**
- In this work, subcriticality experiment is performed with the Feynman-α method at AGN-201K which is zero-power research and training reactor in our country.
- To reduce computing time and for improve accuracy near five critical states in estimating the prompt neutron decay constant, a fully random sampling technique coupled with the second order differential filtering is devised to effectively process the data obtained with a fine gate time within reduced computing time.

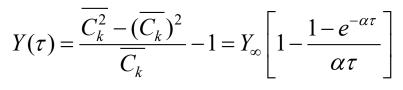
Noise analsysis method

- Noise analysis method are based on the same basic premise that the properites of a subcritical system can be determined by measuring the fluctuations in the fission chain processes that depend on the stochastic nature of the birth and death of neutrons.
- So, if the time of the source or detection event are measurable, the distribution event of the times between the source (or detection) event and detection event would proved a direct indication of the dynamic properties of the subcritical system.

Feynman-α method

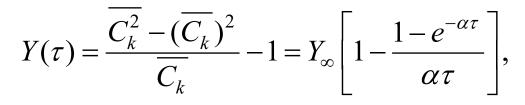
 The Feynman-α method can be derived from the Rossi-α method. This method can determine the prompt neutron decay constant (α) by considering the ratio of the variance to the mean of neutron counts collected in a fixed time interval (i.e., gate time).




Fig. 1 Random branching process of fission neutron

Rossi-a method

$$p(t_1, t_2)dt_1dt_2 = F\varepsilon^2 \left(F + \frac{D_v k_p^2}{2(1 - k_p)\Lambda} e^{-\alpha(t_2 - t_1)}\right) dt_1 dt_2$$


Integration of it over time $\int_{t_2=0}^{\tau} \int_{t_1=0}^{t_2} p(t_1, t_2) dt_1 dt_2 = 1 + \frac{\varepsilon D_v}{\rho_p^2} \left(1 - \frac{1 - e^{-\alpha \tau}}{\alpha \tau} \right); \quad \rho_p = \frac{k_p - 1}{k_p}$

Feynman-α method

Feynman-α method

where Y is defined as the variance-to-mean ratio of a series of neutron counts (C_k) with a gate time τ subtracted by 1. The saturated correlation amplitude Y_∞ includes detector efficiency ε, Diven's factor D_v and prompt reactivity ρ_p.

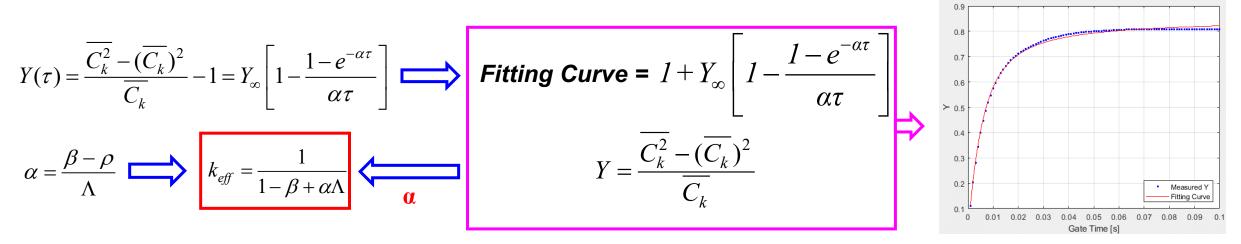


Fig. 2 Determination of prompt neutron decay constant by using Feynman-α fitting curve KYUNG HEE

***** 2nd order Feynman-α differential filtering method

- However, the conventional Feynman-α method suffers from the divergence of the variance near the critical state.
- To circumvent the divergence of the variance, Bennett (1960) proposed an improved method with differences of the counts between adjacent gates.
- Hashimoto et al. (1997) generalized the Bennett's method to develop a difference-filtering technique and proposed a usage of the higher-order filtering for Feynman-α method to reduce the effect of reactor-power drift during a measurement.

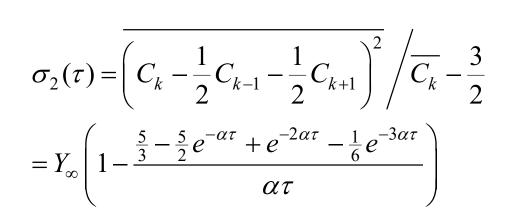


Fig. 3 2^{nd} order Feynman fitting for measured σ_2

Subcriticality Measurement System (SMS)

- In this study, a time-series data of neutron counts within a fine unit gate time of 10 μsec is acquired using the SMS which was developed by Korea Electric Power Research Institute (KEPRI) for measureing the ex-core detector signal from commercial PWR to get the condition of large subcriticality.
- Since the neutron generation time (Λ) is estimated about 50~60 µsec, the shorter gate time can acquire more detailed information for estimating *α* value.

KYUNG HEE

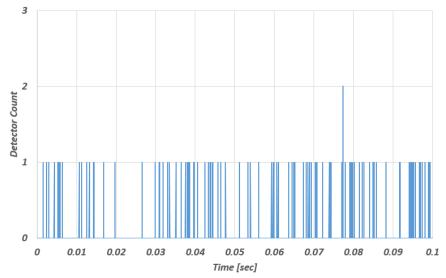
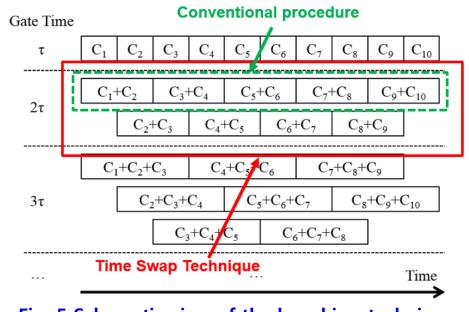
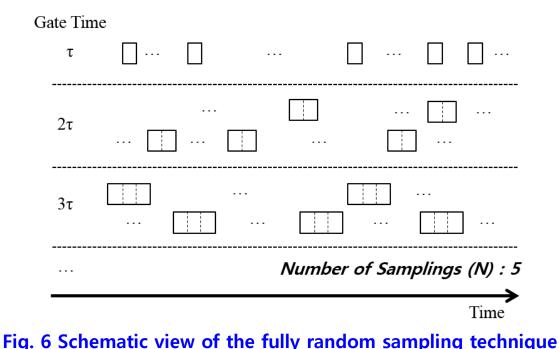


Fig. 4 Subcriticality Measurement System (SMS) and time series data of neutron counts for 0.1 sec

Data Processing with a Fully Random Sampling

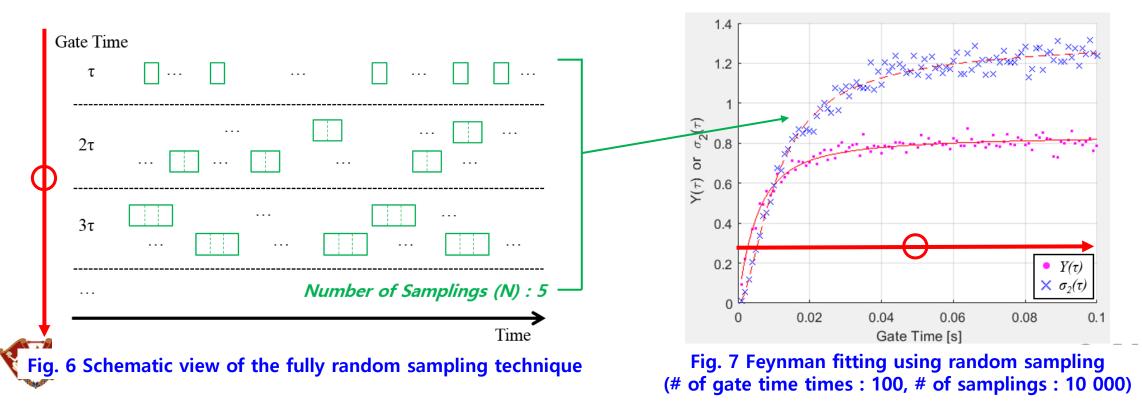
- In general, the Feynman-α method requires sufficient number of measurement data for the reliable accuracy of curve fitting.
- A method called "Bunching-technique (time-swap)" increases the number of data by using shifted data even for long gate times.
- However, those method have some disadvantages that the number of the processing data is too big with a fine gate time, which drastically increases computing time.




Fig. 5 Schematic view of the bunching-technique

UNIVERSI

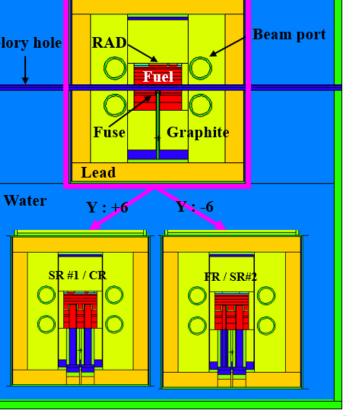
Data Processing with a Fully Random Sampling


- In this work, a simple efficient fully random sampling technique is suggested to overcome these drawbacks.
- In this method, for a given gate time, a given number of starting time points are randomly sampled over the whole data range and then the consecutive count data within the gate time for each sampled starting time bin : C_k.

Data Processing with a Fully Random Sampling

- The only inputs to be specified are the length of gate times (or number of gate times) and the number of the random samplings for each time bin.
- As the number of sampling data increases, the measured *Y* or *σ*₂ approaches a single value and dispersion decreases.

Glory hole

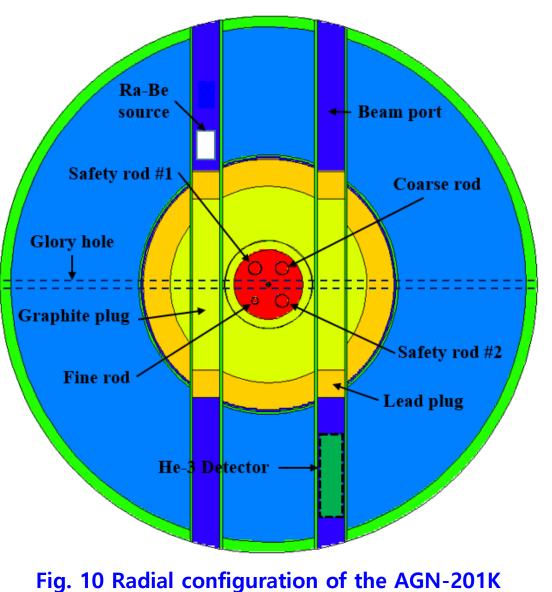

- The fuel is a homogeneous mixture of UO2 and polyethylene.
- The fuel is comprised of 10 disks with 12.8 cm radius and 25 cm active core height.
- Uranium enrichment of the fuel is about 19.5 w/o.
- The active core is surrounded by 25 cm thick graphite reflector followed by a 10 cm thick lead

gamma shield. **KYUNG HEE**

UNIVERSIT

Fig. 8 Axial configuration of the AGN-201K

- AGN-201K is a zero-power research and training reactor built by Aerojet General Nucleonics (AGN).
- It is solid moderated reactor using polyethylene and licensed maximum power is 10 Watt.


Thermal column

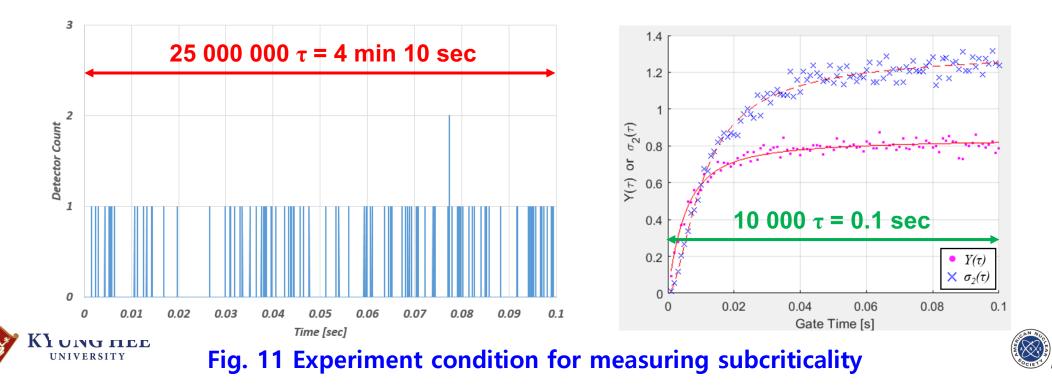
AGN-201K AND SUBCRITICAL STATES

✤ AGN-201K

- For fast neutron shielding, the outside of the core tank is filled with water of ~47.5 cm thickness.
- The control rod consists of 2 Safety Rods (SR), 1
 Coarse Rod (CR), and 1 Fine Rod (FR) that have the same composition as the fuel material.
- During operation reactor power is controlled by CR and FR.
- In particular, an external Ra-Be source located in the left upper beam port supplies neutrons with an intensity of 10 mCi.
- A He-3 ex-core detector conneted with SMS is

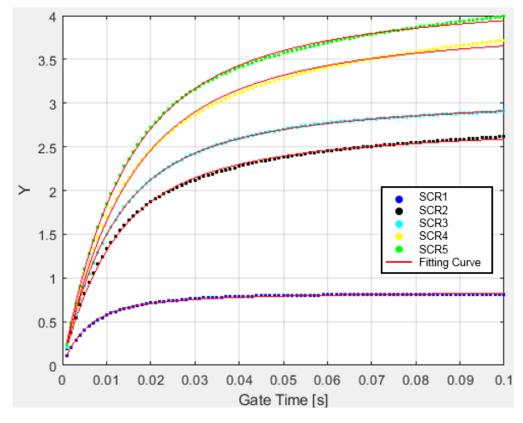
AGN-201K AND SUBCRITICAL STATES

Selected Subcritical States


- Before the subcriticality measurement, five Sub-Critical condition (SCR) are determined.
- By using the MCNP6 eigenvalue calculations, we obtain the reference k_{eff} values and kinetic parameters.
- The MCNP6 eigenvalue calculations are performed with ENDF/B-VII.1 cross sections, and with 100 inactive and 5 000 active cycles of 100 000 histories to minimize the statistical error of k_{eff} and kinetic parameters.

Condition	k	σ	Q	٨	In	serted rod	position (cı	m)
Condition	k _{eff}	(pcm)	β_{eff}	(µsec)	SR#1	SR#2	CR	FR
SCR1	0.98764	3	0.00755	55.89873	23.07	23.44	0	12.56
SCR2	0.99668	3	0.00761	54.55938	23.07	23.44	17.25	12.56
SCR3	0.99737	3	0.00746	54.27638	23.07	23.44	18.25	12.56
SCR4	0.99811	3	0.00757	53.91283	23.07	23.44	19.25	12.56
SCR5	0.99885	3	0.00763	54.00546	23.07	23.44	20.25	12.56
UNIVERSI'	ТҮ			· · · ·		<u>.</u>	· · · · · ·	A SOCIETY

TABLE I. Reference multiplication factors and kinetic parameters estimated with MCNP6

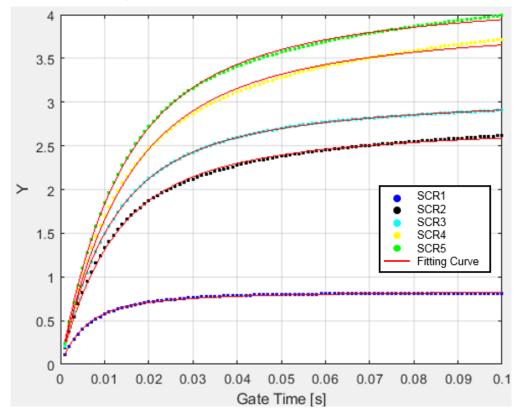

Experiment Condition

- A series of neutron count was obtained for 5 subcritical conditions by using SMS with a unit gate time of 10 μsec during 4 minutes to 5 miniutes.
- The number of time bins considered was 25 million counts (i.e., 25 000 000 τ , τ = 10 μ sec).
- For curve fitting, the length of gate time was considered up to 0.1 sec (i.e., 10 000 τ).

Feynman-α method

 Fig. 12 shows the reference k_{eff} and α value (α-PKE) and difference between reference value and estimated value.

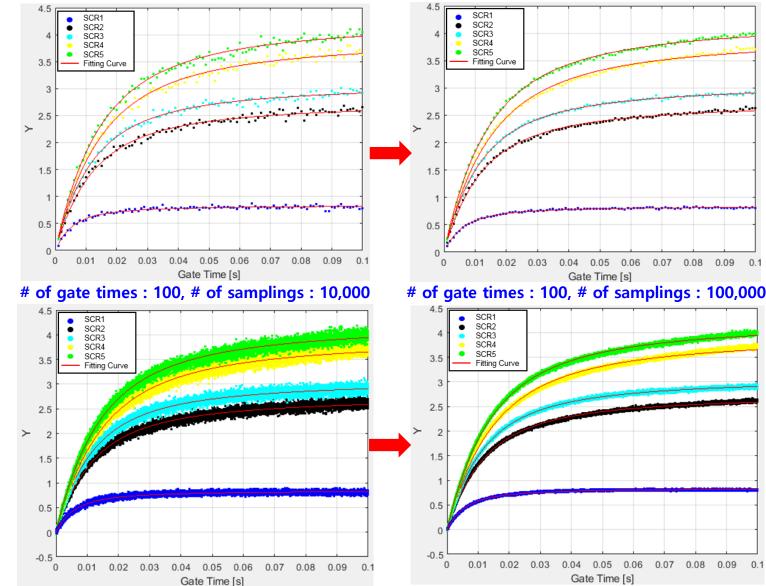
Те	chnique	Time-swap			
# of 9	gate time	100			
# of s	sampling	whole	data		
Condition	Condition k _{eff}		k-est	α-est	
SCR1	0.98764	358.95	0.99103	296.99	
SCRI	0.90704	300.90	^a -338.98	^b 61.96	
SCR2	0.99668	200 52	0.99976	143.92	
JURZ	0.99000	200.55	-307.80	56.61	
SCR3	0.99737	106 02	0.99940	148.51	
SCKS	0.99737	100.03	-202.96	37.52	
SCR4	0.99811	175.53	1.00120	118.13	
SCRA	0.99011	175.55	-309.26	57.40	
SCR5	0.99885	162.6	1.00092	124.19	
JUKJ	0.99000	102.0	-207.39	38.41	
Average	CPU time	e (sec)	1084	79	


^a [(k_{eff}) – (k-est)] (pcm Δ k), ^b [(α -PKE) – (α -est)] (1/s)

Feynman-α method

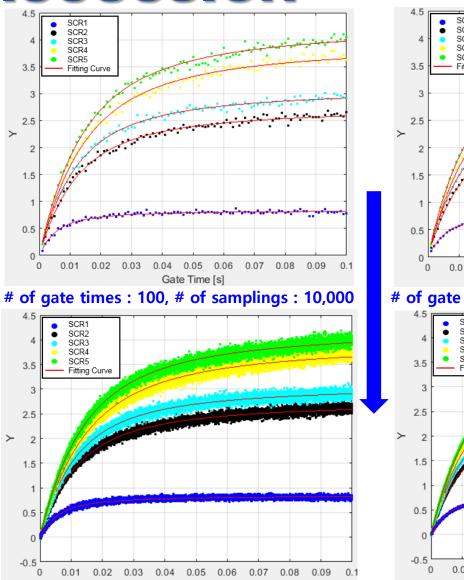
Feynman-α method with time swap gives accurate k_{eff} results less than 340 pcm, but long computing times.

Те	chnique	Time-swap				
# of (gate time	100				
# of :	sampling	whole	data			
Condition	Condition k _{eff}		k-est	α-est		
SCR1	0.98764	358.95	0.99103	296.99		
	0.90704	300.90	^a -338.98	^b 61.96		
SCR2	0.99668	200 52	0.99976	143.92		
JUNZ	0.99000	200.55	-307.80	56.61		
SCR3	0.99737	186.03	0.99940	148.51		
SCKS	0.99737	100.03	-202.96	37.52		
SCR4	0.99811	175.53	1.00120	118.13		
SCRA	0.99011	175.55	-309.26	57.40		
SCR5	0.99885	162.6	1.00092	124.19		
SURS	0.99000	102.0	-207.39	38.41		
Average	CPU time	e (sec)	108479			

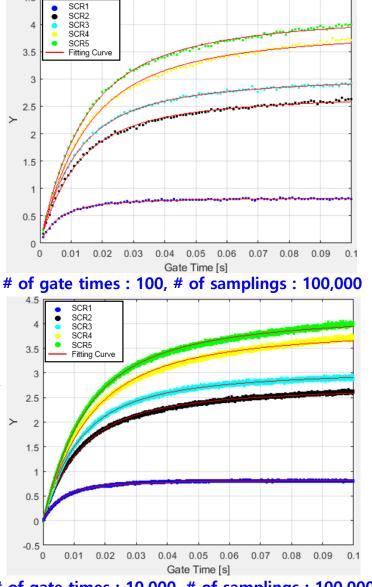

^a [(k_{eff}) – (k-est)] (pcm Δ k), ^b [(α -PKE) – (α -est)] (1/s)

Feynman-α method

- The largest subcritical state
 SCR1 shows the lowest
 slope of the fitting curve.
- As shown in Fig. 13, as the number of sampling increases, the measured Y value converges toward a specific value.



of gate times : 10,000, # of samplings : 10,000 # of gate times : 10,000, # of samplings : 100,000 Fig. 13 Feynman fitting for five subcritical states using fully random sampling tehcnique


Feynman-α method

- As the number of gate times increases, the measured α value can be estimated more elaborately.
- Therefore, the last case shows almost the same results as bunching technique even it takes shorter times.

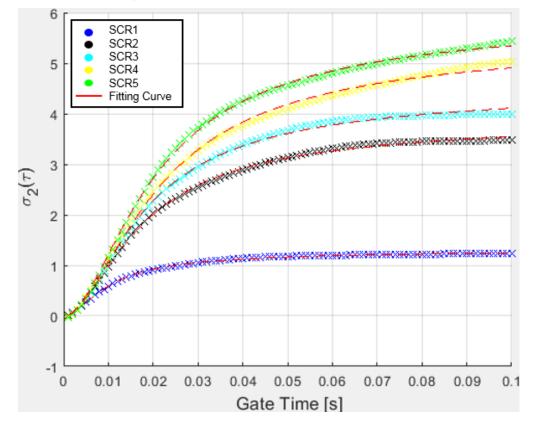
Gate Time [s]

of gate times : 10,000, # of samplings : 10,000 # of gate times : 10,000, # of samplings : 100,000 Fig. 13 Feynman fitting for five subcritical states using fully random sampling tehcnique

***** Feynman-α method with time-swap and fully random sampling methods

It is noted that fully random sampling method even with a much smaller number of gate times gives comparable accuracies and its computing times are much shorter than those of time-swap method.

TABLE II. Results of Feynman-α method using the time-swap and fully random sampling techniques


Technique Time-swap					Fully random sampling								
# of gate times 10				0	100		100		100,000		100,000		
# of samplings		whole data		10,0	10,000		000	10,0	000	100,000			
Condition	k _{eff}	α-PKE	k-est	k-est α-est		α-est	k-est	α-est	k-est	α-est	k-est	α-est	
SCR1	0.98764	259.05	0.99103	296.99	0.98985	318.45	0.99115	294.83	0.99102	297.19	0.99103	297.00	
SURT	0.90704	300.90	^a -338.98	^b 61.96	-221.31	40.50	-350.84	64.12	-337.86	61.76	-338.95	61.95	
SCR2	0 00669	200 52	0.99976	143.92	0.99985	142.27	0.99973	144.35	0.99976	143.80	0.99975	143.98	
JUKZ	0.99668	200.55	-307.80	56.61	-316.80	58.26	-305.46	56.18	-308.45	56.73	-307.45	56.55	
<u>6603</u>	0 00707	186.03	0.99940	148.51	0.99961	144.61	0.99939	148.69	0.99940	148.51	0.99939	148.64	
SCR3	0.99737	100.03	-202.96	37.52	-224.12	41.42	-201.99	37.34	-202.95	37.52	-202.29	37.39	
SCDA	0.99811	175 52	1.00120	118.13	1.00119	118.36	1.00123	117.62	1.00121	118.01	1.00120	118.23	
SCR4	0.99011	175.55	-309.26	57.40	-308.01	57.17	-312.03	57.91	-309.91	57.52	-308.74	57.30	
SCDE	0.99885	162.6	1.00092	124.19	1.00109	121.10	1.00091	124.36	1.00092	124.25	1.00092	124.19	
SCR5	0.99085	102.0	-207.39	38.41	-224.10	41.50	-206.49	38.24	-207.06	38.35	-207.41	38.41	
Average CPU time (sec)			1084	179	703		1142		5737		45353		

¹ ^a [(k_{eff}) – (k-est)] (pcm Δk), ^b [(α-PKE) – (α-est)] (1/s)

***** 2nd order Feynman-α differential filtering method

2nd Feynman-α method with time swap gives accurate k_{eff} results less than 480 pcm, but long computing times.

Те	chnique	Time-swap			
# of (gate time	100			
# of :	sampling	whole	data		
Condition	k _{eff}	α-PKE	k-est	α-est	
SCR1	0.98764	358 05	0.99247	270.73	
SCRI	0.90704	300.90	^a -483.34	^b 88.22	
SCR2	0.99668	200 52	0.99897	158.29	
JUNZ	0.99000	200.55	-229.46	42.24	
SCR3	0.99737	106 02	0.99914	153.31	
SCKS	0.99737	100.05	-176.95	32.72	
SCR4	0.99811	175.53	1.00059	129.50	
SCRA	0.99011	175.55	-247.84	46.03	
SCR5	0.99885	162.6	1.00029	136.00	
SURS	0.99000	102.0	-143.56	26.60	
Average	CPU time	e (sec)	2922	271	

^a [(k_{eff}) – (k-est)] (pcm Δ k), ^b [(α -PKE) – (α -est)] (1/s)

Fig. 14 2nd order Feynman- α fitting for five subcritical states using bunching-technique

***** 2nd order Feynman-α differential filtering method

2nd Feynman-α method shows more accurate measurement near critical states than

conventional Feynman-α method.

6			Method		2 nd orde	er F-α	Feynn	nan-α
	SCR1 SCR2	Te	chnique		Time-swap 100 whole data		Time-swap 100	
5	SCR3 SCR4	# of	gate times	5				
	SCR5 Fitting Curve	# of	samplings	5			whole data	
4		Condition	k _{eff}	α-PKE	k-est	α-est	k-est	α-est
		SCR1	0.98764	358.95	0.99247	270.73	0.99103	296.99
- ³		JURI	0.90704	330.95	^a -483.34	^b 88.22	-338.98	61.96
$\sigma_2(\tau)$		SCDJ	SCR2 0.99668	200.53	0.99897	158.29	0.99976	143.92
2	- Mitter.	JUKZ		200.55	-229.46	42.24	-307.80	56.61
		SCR3	0.99737	186.03	0.99914	153.31	0.99940	148.51
1		SUKS	0.99737	100.03	-176.95	32.72	-202.96	37.52
		SCR4	0.99811	175.53	1.00059	129.50	1.00120	118.13
0	******	SCK4	0.99011	175.55	-247.84	46.03	-309.26	57.40
		SCR5	0.99885	162.6	1.00029	136.00	1.00092	124.19
-1		SCKS	0.99005	102.0	-143.56	26.60	-207.39	38.41
	0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1	Average	CPU time	(sec)	2922	71	108	479
	Gate Time [s]	[(k _{eff}) – (k-est))] (pcm Δk), ^μ	^α [(α-ΡΚΕ)	– (α-est)] (1/s)	_	

Fig. 14 2nd order Feynman-α fitting for five subcritical states using bunching-technique

ANS

* 2nd Feynman-α method

- The shape of the graph looks similar compared with the Feynman-α method, but slight difference at the front.
- As shown in Fig. 15, the number of sampling increases, the measured σ₂ value converges toward a specific value.
- The α value can be estimated more elaborately if we increase the number of

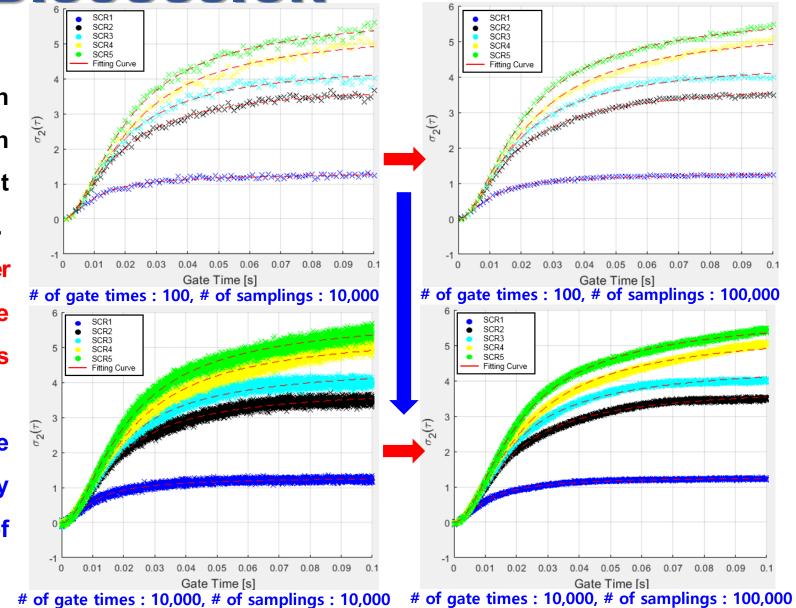


Fig. 15 2nd order Feynman-α fitting for five subcritical states using fully random sampling tehcnique

***** 2nd order Feynman-α differential filtering method

It is noted that fully random sampling method even with a much smaller number of gate times gives

comparable accuracies and its computing times are much shorter than those of time-swap method.

TABLE III. k_{eff} estimated with 2nd order Feynman-α differential filtering method using the time-swap and fully random sampling techniques

Те	chnique		Time-s	swap	Fully random sampling												
# of gate times			100		10	100		100		100,000		000					
# of samplings		whole data		10,0	10,000		000	10,0	000	100,000							
Condition	k _{eff}	α-PKE	k-est	α-est	k-est	α-est	k-est	α-est	k-est	α-est	k-est	α-est					
SCR1	0.08764	0.98764 358.95	0.99247	270.73	0.99271	266.40	0.99249	270.36	0.99247	270.77	0.99249	270.45					
SCRI	0.90704	300.90	^a -483.34	^b 88.22	-507.22	92.55	-485.39	88.59	-483.16	88.18	-484.89	88.50					
SCR2	0.99668	200 52	0.99897	158.29	0.99897	158.33	0.99896	158.50	0.99897	158.32	0.99898	158.22					
JUNZ	0.99000	200.55	-229.46	42.24	-229.26	42.20	-228.36	42.03	-229.35	42.21	-229.85	42.31					
SCR3	0.99737	196 02	0.99914	153.31	0.99906	154.78	0.99913	153.45	0.99915	153.14	0.99914	153.27					
SCRS	0.99737	100.05	-176.95	32.72	-169.00	31.25	-176.22	32.58	-177.88	32.89	-177.16	32.76					
SCR4	0.99811	175 53	1.00059	129.50	1.00057	129.81	1.00060	129.23	1.00060	129.36	1.00058	129.63					
SCRA	0.99011	175.55	-247.84	46.03	-246.19	45.72	-249.35	46.30	-248.62	46.17	-247.16	45.90					
SCR5	0.99885	162.6	1.00029	136.00	1.00031	135.54	1.00030	135.67	1.00029	135.95	1.00028	136.03					
SUKS	0.99000	0.99000	0.99000	0.99000	0.99000	0.99000	102.0	-143.56	26.60	-146.01	27.06	-145.30	26.93	-143.81	26.65	-143.38	26.57
Average	Average CPU time (sec) 292271					719 1401			722	24	61796						
$a \Gamma/l_{c} \rangle /l_{c}$				-4/1 /4/->					-		1	AN NUC					

^a [(k_{eff}) – (k-est)] (pcm Δk), ^b [(α-PKE) – (α-est)] (1/s)

***** 2nd order Feynman-α differential filtering method

 It is noted that the 2nd order Feynman-α method shows a more accurate value than the conventional Feynman-α method near critical states (SCR2~SCR5).

N	lethod			Conventional Feynman-α								
Тес	chnique		Time-swap	vap Fully random sampling			Time-swap Fully random sampling					
# of g	gate time	S	100	100	100	100,000	100,000	00,000 100 100 100 100,000 1				
# of s	sampling	S	whole data	10,000	100,000	10,000	100,000	whole data	10,000	100,000	10,000	100,000
Condition	k _{eff}	α-PKE	k-est	k-est	k-est	k-est	k-est	k-est	k-est	k-est	k-est	k-est
SCD1	0.98764 35	259.05	0.99247	0.99271	0.99249	0.99247	0.99249	0.99103	0.98985	0.99115	0.99102	0.99103
SCR1	0.90704	300.90	^a -483.34	-507.22	-485.39	-483.16	-484.89	^a - <u>338.98</u>	-221.31	-350.84	-337.86	-338.95
SCR2	0.99668	200 52	0.99897	0.99897	0.99896	0.99897	0.99898	0.99976	0.99985	0.99973	0.99976	0.99975
JUKZ	0.99000	200.55	-229.46	-229.26	-228.36	-229.35	-229.85	-307.80	-316.80	-305.46	-308.45	-307.45
	0 00707	106.02	0.99914	0.99906	0.99913	0.99915	0.99914	0.99940	0.99961	0.99939	0.99940	0.99939
SCR3	0.99737	186.03	-176.95	-169.00	-176.22	-177.88	-177.16	-202.96	-224.12	-201.99	-202.95	-202.29
	0.99811	175 50	1.00059	1.00057	1.00060	1.00060	1.00058	1.00120	1.00119	1.00123	1.00121	1.00120
SCR4	0.99011	175.53	-247.84	-246.19	-249.35	-248.62	-247.16	-309.26	-308.01	-312.03	-309.91	-308.74
SODE	0 00005	162.6	1.00029	1.00031	1.00030	1.00029	1.00028	1.00092	1.00109	1.00091	1.00092	1.00092
SCR5 0.99885	162.6	-143.56	-146.01	-145.30	-143.81	-143.38	-207.39	-224.10	-206.49	-207.06	-207.41	
Average (CPU time	e (sec)	292271	719	1401	7224	61796	108479	703	1142	5737	45353

TABLE III. k_{eff} estimated with 2nd order Feynman-α differential filtering method using the time-swap and fully random sampling techniques

^a [(k_{eff}) – (k-est)] (pcm Δk)

CONCLUSION

- In this work, subcriticality experiment is performed with the Feynman-α and 2nd Feynman-α differential method at AGN-201K.
- A fully random sampling technique is devised to overcome the drawbacks that bunching-technique with fine unit gate time drastically increases computing time,.
- For measuring subcriticality, eigenvalue calculations are performed with MCNP6 to obtain reference k_{eff} and kinetic parameters.
- In conclusion, it was shown that the new fully random sampling technique suggested in this work can provide accurate subcriticality estimations with computationally efficient way for AGN-201K and this method coupled with the second-order differential method gives slightly better estimation for the near-critical cases.

THANK YOU FOR YOUR ATTENTION !!

