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INTRODUCTION
v Most nuclear facilities are designed to have conservative subcritical margin to prevent accidentally

uncontrolled neutron multiplications.
v Therefore, an accurate real-time measurement of subcriticality can provide a helpful way to

guarantee the safe operation of nuclear facilities.
v Noise analysis methods have been studied for a long time for this purpose.
v In this work, subcriticality experiment is performed with the Feynman-α method at AGN-201K which

is zero-power research and training reactor in our country.
v To reduce computing time and for improve accuracy near five critical states in estimating the

prompt neutron decay constant, a fully random sampling technique coupled with the second order
differential filtering is devised to effectively process the data obtained with a fine gate time within
reduced computing time.
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THEORY AND METHOD
v Noise analsysis method

§ Noise analsysis method are based on the same basic premise that the properites of a
subcritical system can be determined by measuring the fluctuations in the fission chain
processes that depend on the stochastic nature of the birth and death of neutrons.

§ So, if the time of the source or detection event are measurable, the distribution event of the
times between the source (or detection) event and detection event would proved a direct

indication of the dynamic properties of the subcritical system.

Fig. 1 Random branching process of fission neutron
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THEORY AND METHOD
v Feynman-α method

§ The Feynman-α method can be derived from the Rossi-α method. This method can determine
the prompt neutron decay constant (α) by considering the ratio of the variance to the mean of
neutron counts collected in a fixed time interval (i.e., gate time).
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Fig. 1 Random branching process of fission neutron
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THEORY AND METHOD
v Feynman-α method

§ where Y is defined as the variance-to-mean ratio of a series of neutron counts (Ck) with a gate
time τ subtracted by 1. The saturated correlation amplitude Y∞ includes detector efficiency ε,

Diven’s factor Dv and prompt reactivity ρp.
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Fig. 2 Determination of prompt neutron decay constant by using Feynman-α fitting curve
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THEORY AND METHOD
v 2nd order Feynman-α differential filtering method

§ However, the conventional Feynman-α method suffers from the divergence of the variance near the critical state.

§ To circumvent the divergence of the variance, Bennett (1960) proposed an improved method with
differences of the counts between adjacent gates.

§ Hashimoto et al. (1997) generalized the Bennett’s method to develop a difference-filtering technique and

proposed a usage of the higher-order filtering for Feynman-α method to reduce the effect of reactor-power

drift during a measurement.
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Fig. 3 2nd order Feynman fitting for measured σ2
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THEORY AND METHOD
v Subcriticality Measurement System (SMS)

§ In this study, a time-series data of neutron counts within a fine unit gate time of 10 μsec is
acquired using the SMS which was developed by Korea Electric Power Research Institute
(KEPRI) for measureing the ex-core detector signal from commercial PWR to get the condition

of large subcriticality.
§ Since the neutron generation time (Λ) is estimated about 50~60 μsec, the shorter gate time can

acquire more detailed information for estimating α value.

Fig. 4 Subcriticality Measurement System (SMS) and time series data of neutron counts for 0.1 sec
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THEORY AND METHOD
v Data Processing with a Fully Random Sampling

§ In general, the Feynman-α method requires sufficient number of measurement data for the reliable

accuracy of curve fitting.
§ A method called “Bunching-technique (time-swap)” increases the number of data by using shifted data

even for long gate times.

§ However, those method have some disadvantages that the number of the processing data is too big with a

fine gate time, which drastically increases computing time.

Fig. 5 Schematic view of the bunching-technique
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THEORY AND METHOD
v Data Processing with a Fully Random Sampling

§ In this work, a simple efficient fully random sampling technique is suggested to overcome
these drawbacks.

§ In this method, for a given gate time, a given number of starting time points are randomly

sampled over the whole data range and then the consecutive count data within the gate time
for each sampled starting time bin : Ck.

Fig. 6 Schematic view of the fully random sampling technique
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THEORY AND METHOD
v Data Processing with a Fully Random Sampling

§ The only inputs to be specified are the length of gate times (or number of gate times) and the
number of the random samplings for each time bin.

§ As the number of sampling data increases, the measured Y or σ2 approaches a single value and

dispersion decreases.

Fig. 6 Schematic view of the fully random sampling technique Fig. 7 Feynman fitting using random sampling 
(# of gate time times : 100, # of samplings : 10 000)
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AGN-201K AND SUBCRITICAL STATES
v AGN-201K

§ AGN-201K is a zero-power research and training
reactor built by Aerojet General Nucleonics (AGN).

§ It is solid moderated reactor using polyethylene and

licensed maximum power is 10 Watt.
§ The fuel is a homogeneous mixture of UO2 and

polyethylene.
§ The fuel is comprised of 10 disks with 12.8 cm radius

and 25 cm active core height.

§ Uranium enrichment of the fuel is about 19.5 w/o.
§ The active core is surrounded by 25 cm thick

graphite reflector followed by a 10 cm thick lead
gamma shield.

Fig. 8 Axial configuration of the AGN-201K
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AGN-201K AND SUBCRITICAL STATES
v AGN-201K

§ For fast neutron shielding, the outside of the core
tank is filled with water of ~47.5 cm thickness.

§ The control rod consists of 2 Safety Rods (SR), 1

Coarse Rod (CR), and 1 Fine Rod (FR) that have
the same composition as the fuel material.

§ During operation reactor power is controlled by
CR and FR.

§ In particular, an external Ra-Be source located in

the left upper beam port supplies neutrons with
an intensity of 10 mCi.

§ A He-3 ex-core detector conneted with SMS is
located in right-lower beam port

Fig. 10 Radial configuration of the AGN-201K
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AGN-201K AND SUBCRITICAL STATES
v Selected Subcritical States

§ Before the subcriticality measurement, five Sub-Critical condition (SCR) are determined.
§ By using the MCNP6 eigenvalue calculations, we obtain the reference keff values and kinetic

parameters.

§ The MCNP6 eigenvalue calculations are performed with ENDF/B-VII.1 cross sections, and with
100 inactive and 5 000 active cycles of 100 000 histories to minimize the statistical error of keff

and kinetic parameters.

Condition keff
σ

(pcm) βeff
Λ

(μsec)
Inserted rod position (cm)

SR#1 SR#2 CR FR
SCR1 0.98764 3 0.00755 55.89873 23.07 23.44 0 12.56
SCR2 0.99668 3 0.00761 54.55938 23.07 23.44 17.25 12.56
SCR3 0.99737 3 0.00746 54.27638 23.07 23.44 18.25 12.56
SCR4 0.99811 3 0.00757 53.91283 23.07 23.44 19.25 12.56
SCR5 0.99885 3 0.00763 54.00546 23.07 23.44 20.25 12.56

TABLE I. Reference multiplication factors and kinetic parameters estimated with MCNP6
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RESULTS AND DISCUSSION
v Experiment Condition

§ A series of neutron count was obtained for 5 subcritical conditions by using SMS with a unit
gate time of 10 μsec during 4 minutes to 5 miniutes.

§ The number of time bins considered was 25 million counts (i.e., 25 000 000 τ, τ = 10 μsec).

§ For curve fitting, the length of gate time was considered up to 0.1 sec (i.e., 10 000 τ).

25 000 000 τ = 4 min 10 sec

10 000 τ = 0.1 sec

Fig. 11 Experiment condition for measuring subcriticality
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RESULTS AND DISCUSSION

Technique Time-swap
# of gate times 100
# of samplings whole data

Condition keff α-PKE k-est α-est

SCR1 0.98764 358.95 0.99103 296.99
a -338.98 b 61.96

SCR2 0.99668 200.53 0.99976 143.92
-307.80 56.61 

SCR3 0.99737 186.03 0.99940 148.51
-202.96 37.52

SCR4 0.99811 175.53 1.00120 118.13
-309.26 57.40

SCR5 0.99885 162.6 1.00092 124.19
-207.39 38.41

Average CPU time (sec) 108479
a [(keff) – (k-est)] (pcm Δk), b [(α-PKE) – (α-est)] (1/s)

v Feynman-α method
§ Fig. 12 shows the reference keff and α value (α-PKE) and difference between reference value

and estimated value.

Fig. 12 Feynman fitting for five subcritical states using bunching-technique
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RESULTS AND DISCUSSION

Technique Time-swap
# of gate times 100
# of samplings whole data

Condition keff α-PKE k-est α-est

SCR1 0.98764 358.95 0.99103 296.99
a -338.98 b 61.96

SCR2 0.99668 200.53 0.99976 143.92
-307.80 56.61 

SCR3 0.99737 186.03 0.99940 148.51
-202.96 37.52

SCR4 0.99811 175.53 1.00120 118.13
-309.26 57.40

SCR5 0.99885 162.6 1.00092 124.19
-207.39 38.41

Average CPU time (sec) 108479
a [(keff) – (k-est)] (pcm Δk), b [(α-PKE) – (α-est)] (1/s)

v Feynman-α method
§ Feynman-α method with time swap gives accurate keff results less than 340 pcm, but long

computing times.

Fig. 12 Feynman fitting for five subcritical states using bunching-technique
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RESULTS AND DISCUSSION
v Feynman-α method

§ The largest subcritical state
SCR1 shows the lowest
slope of the fitting curve.

§ As shown in Fig. 13, as the
number of sampling increases,

the measured Y value
converges toward a specific
value.

# of gate times : 100, # of samplings : 10,000 # of gate times : 100, # of samplings : 100,000

# of gate times : 10,000, # of samplings : 100,000# of gate times : 10,000, # of samplings : 10,000

Fig. 13 Feynman fitting for five subcritical states using fully random sampling tehcnique
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RESULTS AND DISCUSSION
v Feynman-α method

§ As the number of gate times
increases, the measured α
value can be estimated

more elaborately.
§ Therefore, the last case

shows almost the same
results as bunching
technique even it takes

shorter times.

# of gate times : 100, # of samplings : 10,000 # of gate times : 100, # of samplings : 100,000

# of gate times : 10,000, # of samplings : 100,000# of gate times : 10,000, # of samplings : 10,000

Fig. 13 Feynman fitting for five subcritical states using fully random sampling tehcnique
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RESULTS AND DISCUSSION
v Feynman-α method with time-swap and fully random sampling methods

§ It is noted that fully random sampling method even with a much smaller number of gate times gives

comparable accuracies and its computing times are much shorter than those of time-swap method.

a [(keff) – (k-est)] (pcm Δk), b [(α-PKE) – (α-est)] (1/s)

Technique Time-swap Fully random sampling
# of gate times 100 100 100 100,000 100,000
# of samplings whole data 10,000 100,000 10,000 100,000

Condition keff α-PKE k-est α-est k-est α-est k-est α-est k-est α-est k-est α-est

SCR1 0.98764 358.95 0.99103 296.99 0.98985 318.45 0.99115 294.83 0.99102 297.19 0.99103 297.00
a -338.98 b 61.96 -221.31 40.50 -350.84 64.12 -337.86 61.76 -338.95 61.95 

SCR2 0.99668 200.53 0.99976 143.92 0.99985 142.27 0.99973 144.35 0.99976 143.80 0.99975 143.98
-307.80 56.61 -316.80 58.26 -305.46 56.18 -308.45 56.73 -307.45 56.55 

SCR3 0.99737 186.03 0.99940 148.51 0.99961 144.61 0.99939 148.69 0.99940 148.51 0.99939 148.64
-202.96 37.52 -224.12 41.42 -201.99 37.34 -202.95 37.52 -202.29 37.39 

SCR4 0.99811 175.53 1.00120 118.13 1.00119 118.36 1.00123 117.62 1.00121 118.01 1.00120 118.23
-309.26 57.40 -308.01 57.17 -312.03 57.91 -309.91 57.52 -308.74 57.30 

SCR5 0.99885 162.6 1.00092 124.19 1.00109 121.10 1.00091 124.36 1.00092 124.25 1.00092 124.19
-207.39 38.41 -224.10 41.50 -206.49 38.24 -207.06 38.35 -207.41 38.41 

Average CPU time (sec) 108479 703 1142 5737 45353

TABLE II. Results of Feynman-α method using the time-swap and fully random sampling techniques
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RESULTS AND DISCUSSION

Technique Time-swap
# of gate times 100
# of samplings whole data

Condition keff α-PKE k-est α-est

SCR1 0.98764 358.95 0.99247 270.73
a -483.34 b 88.22

SCR2 0.99668 200.53 0.99897 158.29
-229.46 42.24

SCR3 0.99737 186.03 0.99914 153.31
-176.95 32.72

SCR4 0.99811 175.53 1.00059 129.50
-247.84 46.03

SCR5 0.99885 162.6 1.00029 136.00
-143.56 26.60

Average CPU time (sec) 292271
a [(keff) – (k-est)] (pcm Δk), b [(α-PKE) – (α-est)] (1/s)

v 2nd order Feynman-α differential filtering method
§ 2nd Feynman-α method with time swap gives accurate keff results less than 480 pcm, but long

computing times.

Fig. 14 2nd order Feynman-α fitting for five subcritical states using bunching-technique
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RESULTS AND DISCUSSION

Method 2nd order F-α Feynman-α
Technique Time-swap Time-swap

# of gate times 100 100
# of samplings whole data whole data

Condition keff α-PKE k-est α-est k-est α-est

SCR1 0.98764 358.95 0.99247 270.73 0.99103 296.99
a -483.34 b 88.22 -338.98 61.96

SCR2 0.99668 200.53 0.99897 158.29 0.99976 143.92
-229.46 42.24 -307.80 56.61 

SCR3 0.99737 186.03 0.99914 153.31 0.99940 148.51
-176.95 32.72 -202.96 37.52

SCR4 0.99811 175.53 1.00059 129.50 1.00120 118.13
-247.84 46.03 -309.26 57.40

SCR5 0.99885 162.6 1.00029 136.00 1.00092 124.19
-143.56 26.60 -207.39 38.41

Average CPU time (sec) 292271 108479
a [(keff) – (k-est)] (pcm Δk), b [(α-PKE) – (α-est)] (1/s)

v 2nd order Feynman-α differential filtering method
§ 2nd Feynman-α method shows more accurate measurement near critical states than

conventional Feynman-α method.

Fig. 14 2nd order Feynman-α fitting for five subcritical states using bunching-technique

22



RESULTS AND DISCUSSION
v 2nd Feynman-α method

§ The shape of the graph
looks similar compared with
the Feynman-α method, but

slight difference at the front.
§ As shown in Fig. 15, the number

of sampling increases, the
measured σ2 value converges
toward a specific value.

§ The α value can be
estimated more elaborately

if we increase the number of
gate times.

Fig. 15 2nd order Feynman-α fitting for five subcritical states using fully random sampling tehcnique

# of gate times : 100, # of samplings : 10,000 # of gate times : 100, # of samplings : 100,000

# of gate times : 10,000, # of samplings : 100,000# of gate times : 10,000, # of samplings : 10,000
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RESULTS AND DISCUSSION
v 2nd order Feynman-α differential filtering method

§ It is noted that fully random sampling method even with a much smaller number of gate times gives
comparable accuracies and its computing times are much shorter than those of time-swap method.

a [(keff) – (k-est)] (pcm Δk), b [(α-PKE) – (α-est)] (1/s)

Technique Time-swap Fully random sampling
# of gate times 100 100 100 100,000 100,000
# of samplings whole data 10,000 100,000 10,000 100,000

Condition keff α-PKE k-est α-est k-est α-est k-est α-est k-est α-est k-est α-est

SCR1 0.98764 358.95 0.99247 270.73 0.99271 266.40 0.99249 270.36 0.99247 270.77 0.99249 270.45
a -483.34 b 88.22 -507.22 92.55 -485.39 88.59 -483.16 88.18 -484.89 88.50 

SCR2 0.99668 200.53 0.99897 158.29 0.99897 158.33 0.99896 158.50 0.99897 158.32 0.99898 158.22
-229.46 42.24 -229.26 42.20 -228.36 42.03 -229.35 42.21 -229.85 42.31 

SCR3 0.99737 186.03 0.99914 153.31 0.99906 154.78 0.99913 153.45 0.99915 153.14 0.99914 153.27
-176.95 32.72 -169.00 31.25 -176.22 32.58 -177.88 32.89 -177.16 32.76 

SCR4 0.99811 175.53 1.00059 129.50 1.00057 129.81 1.00060 129.23 1.00060 129.36 1.00058 129.63
-247.84 46.03 -246.19 45.72 -249.35 46.30 -248.62 46.17 -247.16 45.90 

SCR5 0.99885 162.6 1.00029 136.00 1.00031 135.54 1.00030 135.67 1.00029 135.95 1.00028 136.03
-143.56 26.60 -146.01 27.06 -145.30 26.93 -143.81 26.65 -143.38 26.57 

Average CPU time (sec) 292271 719 1401 7224 61796

TABLE III. keff estimated with 2nd order Feynman-α differential filtering method using the time-swap and fully random sampling techniques
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RESULTS AND DISCUSSION
v 2nd order Feynman-α differential filtering method

§ It is noted that the 2nd order Feynman-α method shows a more accurate value than the
conventional Feynman-α method near critical states (SCR2~SCR5).

a [(keff) – (k-est)] (pcm Δk)

Method 2nd order Feynman-α Conventional Feynman-α
Technique Time-swap Fully random sampling Time-swap Fully random sampling

# of gate times 100 100 100 100,000 100,000 100 100 100 100,000 100,000
# of samplings whole data 10,000 100,000 10,000 100,000 whole data 10,000 100,000 10,000 100,000

Condition keff α-PKE k-est k-est k-est k-est k-est k-est k-est k-est k-est k-est

SCR1 0.98764 358.95 0.99247 0.99271 0.99249 0.99247 0.99249 0.99103 0.98985 0.99115 0.99102 0.99103
a -483.34 -507.22 -485.39 -483.16 -484.89 a -338.98 -221.31 -350.84 -337.86 -338.95

SCR2 0.99668 200.53 0.99897 0.99897 0.99896 0.99897 0.99898 0.99976 0.99985 0.99973 0.99976 0.99975
-229.46 -229.26 -228.36 -229.35 -229.85 -307.80 -316.80 -305.46 -308.45 -307.45

SCR3 0.99737 186.03 0.99914 0.99906 0.99913 0.99915 0.99914 0.99940 0.99961 0.99939 0.99940 0.99939
-176.95 -169.00 -176.22 -177.88 -177.16 -202.96 -224.12 -201.99 -202.95 -202.29

SCR4 0.99811 175.53 1.00059 1.00057 1.00060 1.00060 1.00058 1.00120 1.00119 1.00123 1.00121 1.00120
-247.84 -246.19 -249.35 -248.62 -247.16 -309.26 -308.01 -312.03 -309.91 -308.74

SCR5 0.99885 162.6 1.00029 1.00031 1.00030 1.00029 1.00028 1.00092 1.00109 1.00091 1.00092 1.00092
-143.56 -146.01 -145.30 -143.81 -143.38 -207.39 -224.10 -206.49 -207.06 -207.41

Average CPU time (sec) 292271 719 1401 7224 61796 108479 703 1142 5737 45353

TABLE III. keff estimated with 2nd order Feynman-α differential filtering method using the time-swap and fully random sampling techniques
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CONCLUSION
v In this work, subcriticality experiment is performed with the Feynman-α and 2nd Feynman-α

differential method at AGN-201K.
v A fully random sampling technique is devised to overcome the drawbacks that bunching-technique

with fine unit gate time drastically increases computing time,.
v For measuring subcriticality, eigenvalue calculations are performed with MCNP6 to obtain

reference keff and kinetic parameters.

v In conclusion, it was shown that the new fully random sampling technique suggested in this work
can provide accurate subcriticality estimations with computationally efficient way for AGN-201K

and this method coupled with the second-order differential method gives slightly better estimation
for the near-critical cases.
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