

Delivering science and technology to protect our nation and promote world stability

Optimization of Binning Parameters in the Feynman Variance-to-Mean Method for Delayed Neutron Reinterrogation

Keenan Harvis Graduate Student Researcher

ANS Winter 2019

Personal Background

- Educational Background
 - $_{\odot}$ University of Michigan
 - BSE in Nuclear Engineering, 2018
 - University of California, Berkeley
 - PhD student in Nuclear Engineering

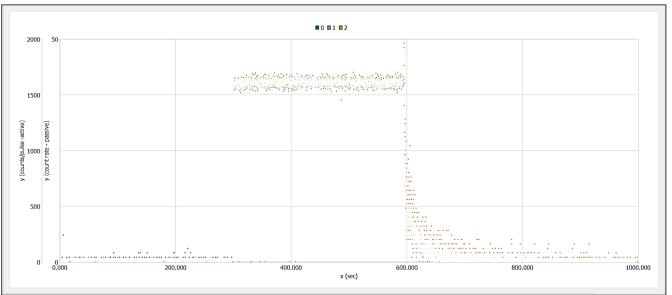
Los Alamos National Laboratory


• NEN-2

○ Bill Myers

Research

 Optimizing parameters to use the Feynman variance-to-mean method for delayed neutron reinterrogation

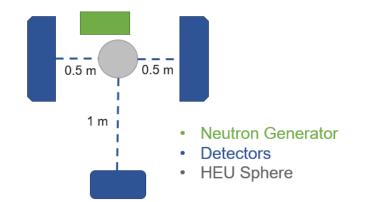


Overview

Delayed Neutron Reinterrogation

- $_{\odot}$ Use pulsed neutron generator to activate material
- Daughter products become delayed neutron precursors
- Delayed neutrons re-interrogate material, allowing for analysis between pulses

Research Objectives

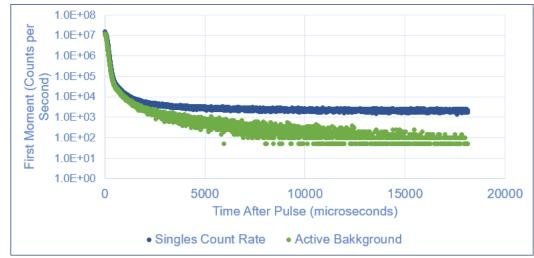

Testing FeynView


- Active interrogation data analysis software
- Writing user manual
- Determining optimal input parameters to allow for faster, more accurate determination of presence of SNM

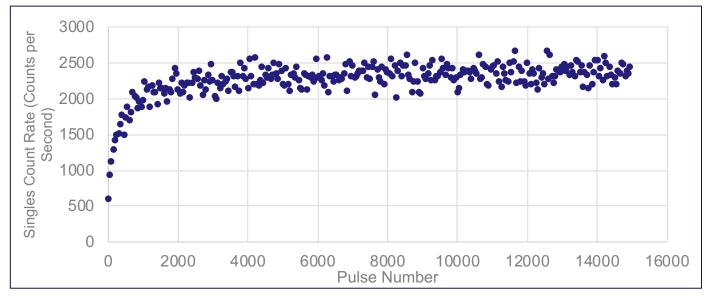
Data Fil	es (Drag and Drop)
c:/users/3	43226/documents/feynview data/active I1 poly_on/2017_01_11_173246_15000 pulses_poly_on.lmx
	Parameters Histogram Bin Width 20 us • Active Interval Lower L 10 ms • Active Interval Upper L 14 ms • Dead Time 0 ms • Low Pulse Limit 1 1
	High Pulse Limit 14999 Channel Mask x7FFF7FFF SNP Channel Mask \$80008000
Feynman Histograms	Rossi-Alpha Histograms Counts Table SNP Count Rates
O Per Pulse Minimum Gate Width Gate Width Step Number of Gates	O Over Pulses 1 ns * 10 us * 400
Feynman File	View: O Histograms O Moments O Rates O Spreadsheet O H-D Results 2226/documents/feynview data/active I1 poly_on/2017_01_11_173246_15000 pulses_poly_on_2.lmx 0 H-D Results
Results	
Calculating	

Experimental Setup

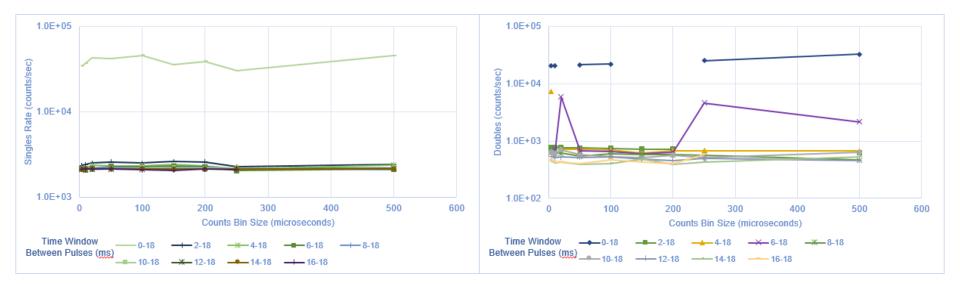
- Two NoMAD detectors 50 cm away from the SNM
- One SNAP III detector 100 cm away from
- Setup located 67 cm above the ground
- a Thermo Fisher P211 pulsed 14 MeV neutron generator (1E6 neutrons per pulse and 50 Hz) directly above SNM
- A 21.8 kg metal sphere of HEU (93 weight percent) assembled from the Rocky Flats (RF) uranium hemi-shells 3-30



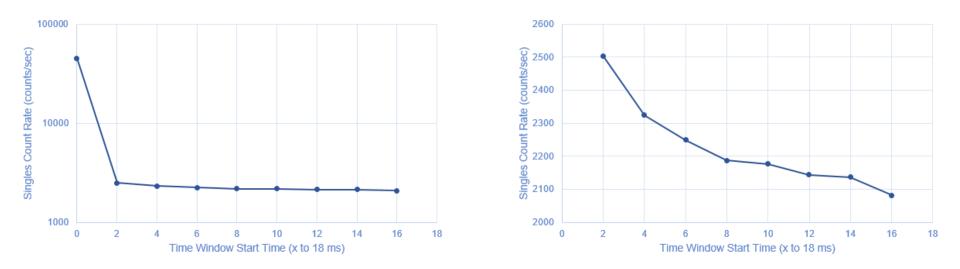
Research Approach


Produce Feynman histograms sequentially

- Varied active interval lower and upper limit used by 2 ms
 - Interval range from 0 to 18 ms to observe potential impact on rates and multiplicity
- Observed count rate as a function of pulse to determine how many pulses are required to build up to steady state


Results-Initial Pulse Used

- To prevent biasing the results low, initial pulses before buildup has reached "steady state" need to be removed from calculations
- Depending on specific fit, near steady state precursor population requires wait time of 1500 to 2000 pulses


Results – Active Interval Binning

- Subdivision of counts into active interval bins has negligible effects on result
 - · Minor differences due to bin sizes not perfectly matching with time window

Results – Time Window

- To decrease noise from pulse die-away, data from the initial x milliseconds is neglected
- The first 6-8 ms have too large of variance, indicating noise from the pulse

Conclusions & Future Work

- For 50 Hz pulses:
 - Neutron generator is difficult to distinguish from HEU source within 6-8 ms of each pulse
 - Buildup to steady state precursor population requires waiting period of 1500 to 2000 pulses
 - Subdivision of counts into active interval bins has negligible effects on result, as expected
- Future Work
 - Determine whether any of these factors have effects on multiplicity
 - Determine the minimum time required to differentiate SNM from dummy sources
 - Test software using different source and neutron generator frequencies

Acknowledgements

- Jesson Hutchinson
- John Determan
- William Myers

 This work was supported in part by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.