ANS Annual Meeting 2020 Countdown to 2030

ANSI/ANS-8.7 Applications for the Storage of Criticality Control Overpacks

Brittany Williamson

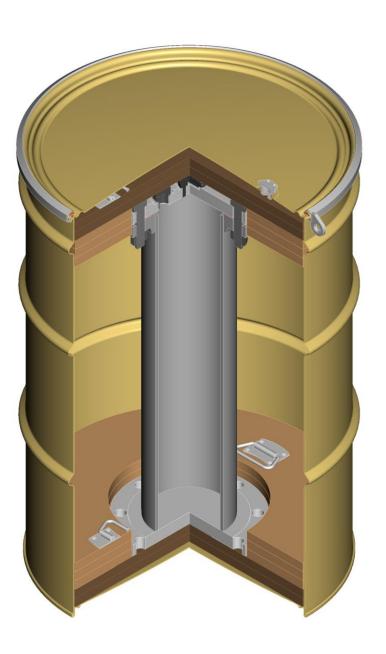
Senior Criticality Safety Engineer

SRNS-STI-2020-00223

FLUOR • NEWPORT NEWS NUCLEAR • HONEYWELL

Background – SRS & K-Area

- The Savannah River Site is a 310-square-mile property owned by the Department of Energy and was established in the 1950s to create plutonium and tritium for the Cold War
- K-Area was a plutonium production reactor facility that was converted into a plutonium storage facility in the 1990s
- K-Area stores plutonium primarily in 9975 shipping packages and has both non-destructive assay and destructive examination capabilities


Criticality Control Overpacks (CCOs)

- A CCO is a 55-gallon drum with a 6-inch containment vessel with essentially no dunnage or shielding
- Plutonium oxide is mixed with an adulterant material in a downblend can
- Two downblend cans are placed in a CCO
- CCO mass limit is 380 FGE ²³⁹Pu as oxide
- CCOs have an outer diameter of ~22 inches (~57 cm) and a height of ~35 inches (~88 cm)
- The containment vessel has an outer diameter of ~6 inches (16.8 cm)

CCOs

CCO Storage at SRS

- A dedicated CCO storage pad is being constructed in K-Area
- Thousands of CCOs will be stored, characterized, and loaded into TRUPACT-IIs for transport to WIPP
- CCOs will be stacked 3 tiers high in very large arrays

ANSI/ANS-8.7-1998, *Nuclear Criticality Safety in the Storage of Fissile Materials*

- ANS-8.7 provides subcritical mass values for air-spaced arrays of fissile material
- There are multiple tables that provide series of subcritical mass limits as a function of fissile form, isotopics, spacing, moisture content, and array size
- Spacing is accounted for by using a cubic cell dimension of x mm (x = 254, 305, 381, 457, 508, and 610)
- The lowest mass limit per unit is obtained with the largest array size (1,000 units), highest moisture content (H/X = 20), and smallest cell dimension (254 cm)

Normal Conditions - CCO

- Spacing
 - A CCO is 570 mm in diameter and 880 mm in height
 - The CCO can be conservatively approximated as a cubic storage cell with a unit cell dimension of 570 mm
- Moisture
 - The highest expected H/Pu for downblended Pu oxide is \sim 15.
- Array size
 - A 10x10x3 array is conservative

Normal Conditions – ANS-8.7

Table 5.8 Unit Mass Limit in Kilograms of Plutonium per Cell in Water-Reflected Storage Arrays: Oxides, 100 wt-% ²³⁹Pu

Number of Units in Cubic Storage Arrays	Minimum Dimension of Cubic Storage Cell (mm)							
	254	305	381	457	508	610		
1000	0.6	0.9	1.3	1.8	2.2	2.9		

- The CCO unit cell dimension of 570 mm is not provided, so the next most conservative unit cell dimension is 508 mm
- This indicates that up to 2.2 kg per cell of Pu as oxide, 100 wt.% ²³⁹Pu, H/Pu<20, with an array size of 1,000 units and a unit cell dimension of 508 mm is subcritical
- A CCO only has 0.380 kg per cell of Pu a large margin to 2.2 kg per cell!

Other Considerations

- Array shape factor
 - The limits in ANS-8.7 were established for cubic arrays (10x10x10)
 - There will be more neutron leakage in our more realistic array shapes
 - ANS-8.7, Section 6.5 states the limits may be applied to arrays of any shape
- Structural materials
 - ANS-8.7 states that the limits allow for thicknesses of steel less than 12.7 mm (0.5 inches) as shelving or as close-fitting containers in contact with the fissile material or spaced to less than 26 mm (~1.0 inch) from the fissile material
 - The only structural material that is close fitting is the downblend can, which has a steel thickness of 6 mm (0.237 inches).
- Plastic bags
 - Section 5.2 of ANS-8.7 states that margins inherent in the mass limits are sufficient to compensate for incidental moderation such as that resulting from enclosing each unit in a thin plastic bag.

Credible Abnormal Conditions – Excess Mass

- The credible abnormal excess mass in a CCO is 500 g Pu as oxide.
- As shown previously, the subcritical mass limit from ANS-8.7 is 2.2 kg Pu as oxide for 100 wt.% ²³⁹Pu, H/Pu<20, with an array size of 1,000 units and a unit cell dimension of 508 mm
- Even if the excess mass was four times higher, it would still be subcritical

Credible Abnormal Conditions – Damaged CCO

 The maximum expected damage to CCOs from vehicle impacts or drops is 2 inches radial damage (a decrease of ~102 mm diameter)

> Table 5.8 Unit Mass Limit in Kilograms of Plutonium per Cell in Water-Reflected Storage Arrays: Oxides, 100 wt-% ²³⁹Pu

Number of Units in Cubic Storage Arrays	Minimum Dimension of Cubic Storage Cell (mm)							
	254	305	381	457	508	610		
1000	0.6	0.9	1.3	1.8	2.2	2.9		

 However, since there is a lack of technical justification, a conservative assumption is made to analyze arrays of damaged CCOs as only the containment vessel.

CLEAR SOLUTION

 The containment vessel has a diameter of 168 mm, which is outside the scope of ANS-8.7

Credible Abnormal Conditions – Flooding

- CCO storage will be outside and under fire suppression sprinklers.
- The values in ANS-8.7 are applicable for arrays with up to 200 mm water reflection on the outside of the array (no interstitial moderation).
- ANS-8.7, Section 5.2 states that the effects of significant interstitial moderation (more than a plastic bag) should be evaluated through the use of a validated computational technique.

Validation – Normal Conditions

- MCNP models were created to evaluate the normal and credible abnormal conditions for CCO storage
- For an infinite array of triangular pitched CCOs with normal mass and spacing, k_{eff} = 0.141
- Monte Carlo results this low are semi-meaningless, but they do indicate subcriticality as well as the large margin inherent in these systems
- The same conclusions can be drawn from comparing the ANS-8.7 limit of 2.2 kg Pu per unit and the CCO mass of 380 g Pu per unit

Validation – Excess Mass

- For an infinite array of triangular pitched CCOs with excess mass(500 g Pu per CCO) and normal spacing, k_{eff} = 0.146
- These results indicate subcriticality as well as the large margin inherent in these systems
- The same conclusions can be drawn from comparing the ANS-8.7 limit of 2.2 kg Pu per unit and the CCO mass of 500 g Pu per unit

Additional Analysis – Damaged CCO

- An infinite array of containment vessels has a $k_{eff} = 0.836$
- This is not a realistic representation of any credible abnormal condition, but it is bounding
- If a more realistic damage scenario could be developed and justified, then results from ANS-8.7 could be used and Monte Carlo k_{eff} values would also be lower

Additional Analysis - Flooding

- A large, triangular-pitched array of CCOs with full density interstitial flooding as well as internal flooding inside the containment vessel yielded a k_{eff} = 0.255
- The increase in k_{eff} from the normal condition is due to both the increased reflection on a single unit and the increase in moderation in the fissile material.
- In the fully flooded condition, the units are isolated, and the scenario essentially becomes a single-unit problem
- Partial (low-density) flooding was also considered, but due to the large difference between the spacing between units and the neutron mean free path, full flooding was bounding

Conclusions

- Conservative assumptions were made for the following parameters:
 Mass, isotopics, moderation, spacing, array size
- These values were used to determine a subcritical mass limit from ANS-8.7, which indicated that the CCO mass limit of 380 g Pu is subcritical with large margins of safety
- These results were validated with MCNP, and additional analysis was performed
- Future improvements: Interstitial moderation guidelines and/or limits would be helpful in ANS-8.7

Questions?

