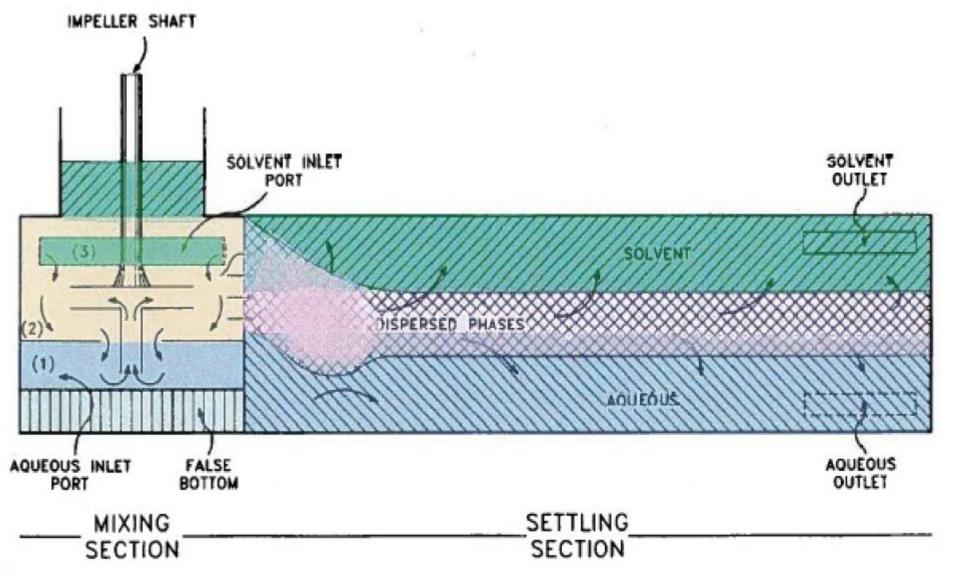
ANS Annual Meeting 2020 Countdown to 2030

A Parametric Study of Uranium Sensitivity in an Aqueous Separations Simulation

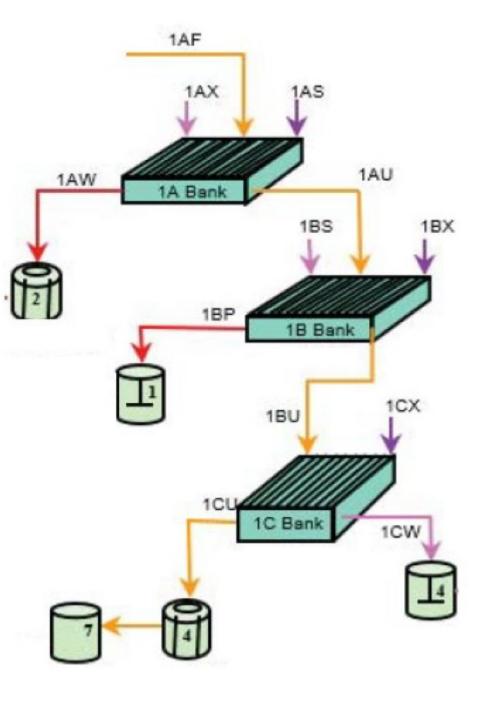
Camden Blake : Student, Rensselaer Polytechnic Institute Tracy E. Stover, Ph.D., P.E. : Principal Engineer SRNS

Background

- SRS H-Canyon operates a two cycle aqueous solvent extraction system for separations and recovery of HEU
 - First cycle partitions uranium from fission products and other actinides
 - Second cycle purifies and further decontaminates the uranium
 - Allowable ranges process stream composition and flow
- Uranium concentration affects both the <u>criticality safety</u> and <u>economy</u> of operating the separations and purification process
 - Fissile material location and concentration must be controlled to prevent criticality
 - Fissile material throughput affects the process run time and the need for post process decanting and evaporation

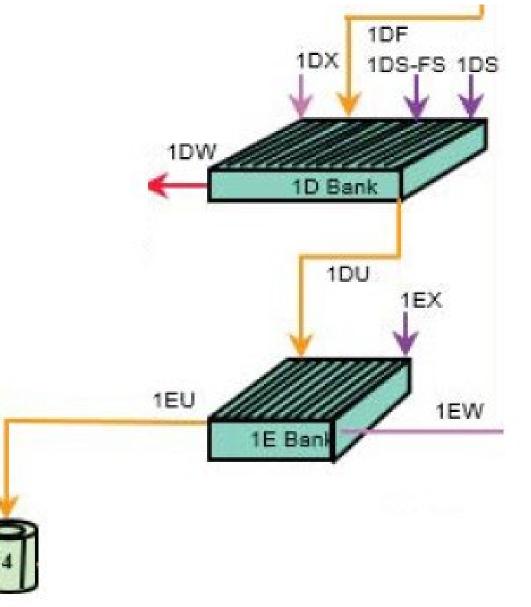

Simulations are performed in SEPHIS Modification 4

- Ease of input development
- Rapid batch wise execution


Mixer Settler Design and Function

MIXER-SETTLER, SINGLE STAGE

First Cycle Simulation


First Cycle Simulation

Parameter	Acceptable Range		
Process feed stream	5.4 to 6.6 L/min 2.5 to 4.68 gU/L 0.00365g Pu/L 4.45 to 7.49 M acid		
A-Bank acid stream	1.3 to 1.5 L/min 3.5 to 4.3 M acid		
A-Bank solvent stream	10.1 to 11.6 L/min		
B-Bank acid stream	6.3 to 7.1 L/min 1.5 to 1.5 M acid 0.00375 to 0.22 M reductant		
B-Bank solvent stream	18.7 to 21.5 L/min		
C-Bank acid stream	7.4 to 8.5 L/min 0.005 to 0.035 M acid		
TBP Concentration (all solvent streams)	7.35 to 8.10 vol.%		

Second Cycle Simulation

Second Cycle Simulation

Parameter	Acceptable Range	
Process feed stream	8.1 to 8.95 L/min 4.6 to 6.6 g U/L 3.9 to 5.8 M acid	
D-Bank acid stream	3.43 to 3.79 L/min 0.825 to 1.5 M acid	
D-Bank solvent stream	25.5 to 27.71 L/min	
D-Bank reductant stream	0.07 to 0.08 L/min 0.02 to 0.06 M reductant	
E-Bank acid stream	6.48 to 7.16 L/min 0.005 to 0.04 M acid	
TBP Concentration (all solvent streams)	7.35 to 8.10 vol.%	

Parameter Variation Method

 Each of the parameters' ranges listed above is cast as a <u>uniform distribution</u> between the minimum and maximum

Random perturbations of all input variables

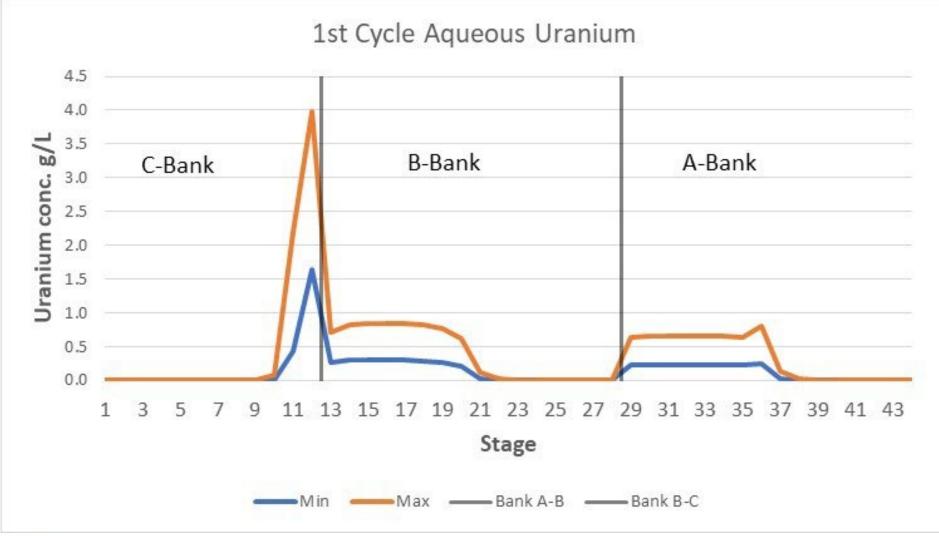
- 1000 perturbations of for each cycle
- All parameters available for perturbation are randomly perturbed within their acceptable ranges
- Reflects reality of operation

Component perturbation

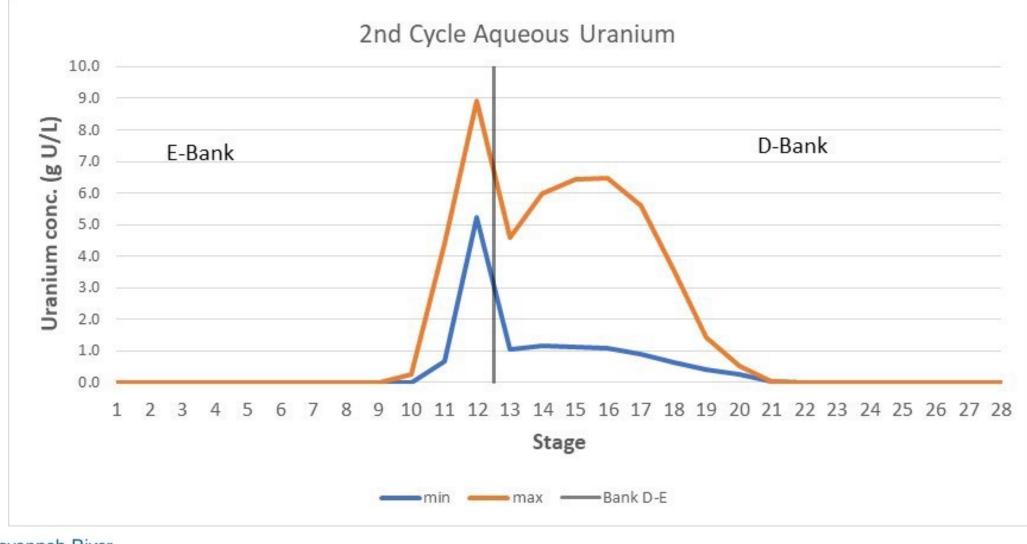
- All process parameters available for perturbation are held at their midpoint value except one which is allowed to be perturbed within its range
- 150 random perturbations per variable
- Results are presented for aqueous phase uranium concentration because it drives economy of the cycles and neutron multiplication of the mixer-settler banks
- Comparable results and analyses were performed on organic phase uranium concentration

Results

- Expected output stream ranges
- Output parameter distribution
- Component linearity
- Covariance correlation


Results – Output Stream Concentration

- First Cycle product stream had a range of 1.635 to 3.977 g U/L.
- Second Cycle product stream had a range of 5.250 to 8.916 g U/L.
- This is the most practical result of this study.
- Product streams are the highest or near highest concentration in the mixer settler
- Product stream concentrations affect the need for product evaporation


Results – Output Stream Concentration

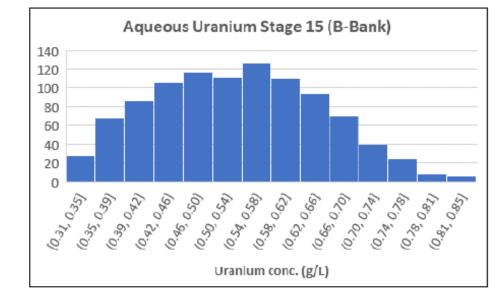
Results – Output Stream Concentration

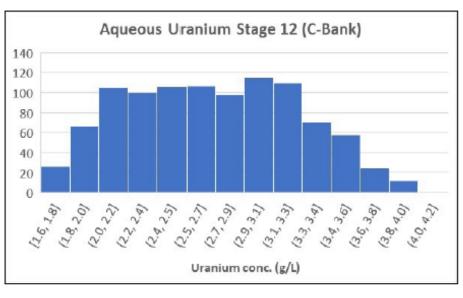
Results – Output Parameter Distribution

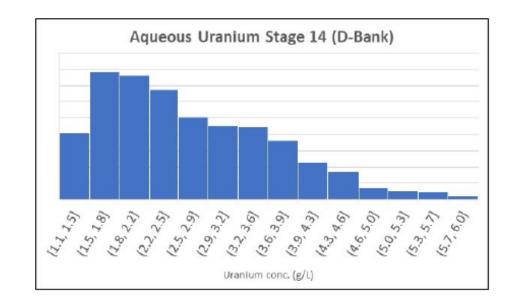
Uniform distribution inputs

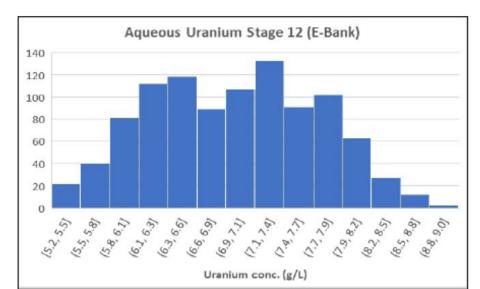
Output distributions were not uniform

- One of the distributions appeared close to being normal was subjected to statistical test and was found not to be normal.
- One of the distributions appeared to have a skewed (higher order) Weibull distribution but did not exactly fit


Simulation is non-linear and involves higher order relationships


- Expected due to chemistry involved
- No simple correlation of inputs to outputs





Results – Output Parameter Distribution

Results – Output Linearity Analysis

• Simple linearity test:

- For any output in any stage the result of perturbing each individual stream should sum to the result where all streams are perturbed simultaneously.
- If the model is weakly non linear, this would be expected to sum to within a few percent.

Highly non-linear, competing effects exist within the chemical process

Results – Output Normality Evaluation

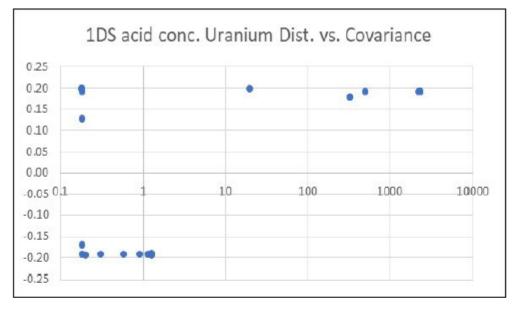
Savannah R

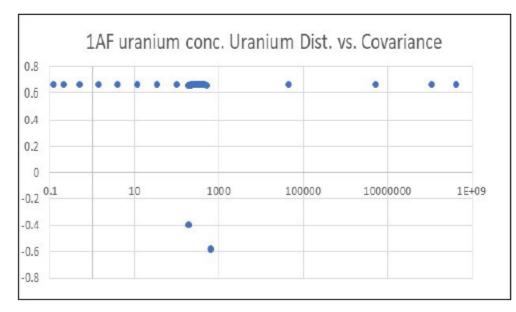
FLUOR

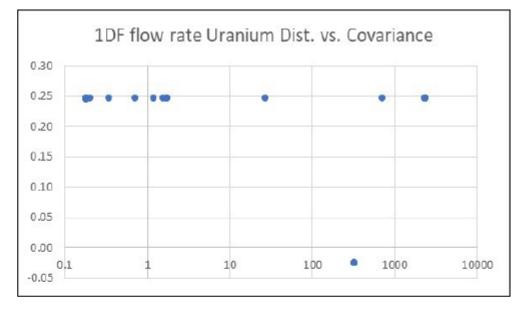
NEWPORT NEWS NUCLEAR
 HONEYWELL

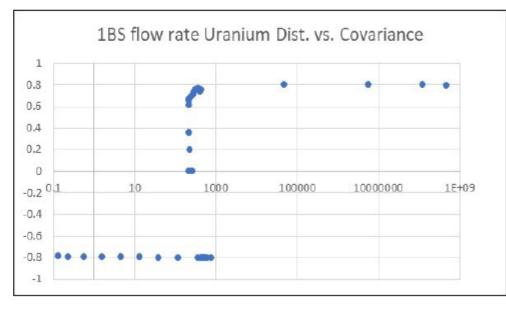
Bank -Stage	All perturbed case	Sum of top contributors	Sum of squares of top contributors
A-3	0.0568	0.4336	0.2898
A-4	0.0568	0.4512	0.3005
A-5	0.0563	0.4517	0.3008
A-6	0.0553	0.4518	0.3009
A-7	0.0529	0.4518	0.3008
A-8	0.0600	0.4518	0.3004
D-4	5.380	6.074	3.710
D-5	4.718	4.834	2.725
D-6	2.9231	2.6293	1.3354
D-7	1.0141	0.9133	0.4453
D-8	0.2505	0.2735	0.1717
D-9	0.02987	0.03044	0.01669
DLUTIONS ^{**}			

Results – Output Correlation to Covariance


- Can the covariance between a key input and a key output be correlated to a fundamental physics parameter?
 - Distribution of the uranium between the two phases is a function of acid, reductant, TBP, and uranium concentrations.
 - It is a chemical property that is part of the nature of the process.
- An attempt was made to search for a dependence on the covariance between an output and an input parameter with respect to the distribution coefficient.
 - For example, given aqueous uranium concentration outputs for perturbing feed flow, the distribution coefficient of uranium in each bank stage was calculated for each case.
 - Using the standardized covariance function in Excel the covariance of aqueous uranium concentration with respect to feed flow was plotted versus the distribution coefficient.


No Correlations Found





Results – Output Correlation to Covariance

Conclusions

- Practical results of knowledge of the product concentration ranges during normal operations was obtained
 - Available for both organic and aqueous phases throughout process
- Chemistry simulation was confirmed to be highly non-linear
- Parameter output distribution did not follow any known distribution correlation
- No mathematical correlations could be concluded

Acknowledgements

This work was funded by the Savannah River Nuclear Solutions, LLC Engineering Summer Internship Program

Questions?

