

Performing k_{eff} Validation of As-Loaded Criticality Safety Calculations Using UNF-ST&DARDS: Applicable Experiment Selection

W.J. Marshall, J.B. Clarity, and K. Banerjee

ANS Annual Meeting "Phoenix, AZ" June 11, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- 1. Introduction and background
- 2. Application systems considered
- 3. Critical experiment suite
- 4. C_k results
- 5. Conclusion

Introduction and background

- UNF-ST&DARDS performs many analyses for as-loaded SNF canisters: criticality safety, shielding, thermal-hydraulic, containment
 - Overall plan for NCS validation presented by Clarity in Minneapolis
 - k_{eff} sensitivity calculations presented in previous paper
- Experiment selection based on c_k assessment of similarity - c_k value of 0.8 or greater considered applicable for validation
- 11 PWR SNF canisters (MPC-32) used in this work
 - 1 model represents a failed fuel assembly as fresh, per the design basis
 - Remaining 10 models represent all 32 assemblies with depleted fuel

Application systems considered

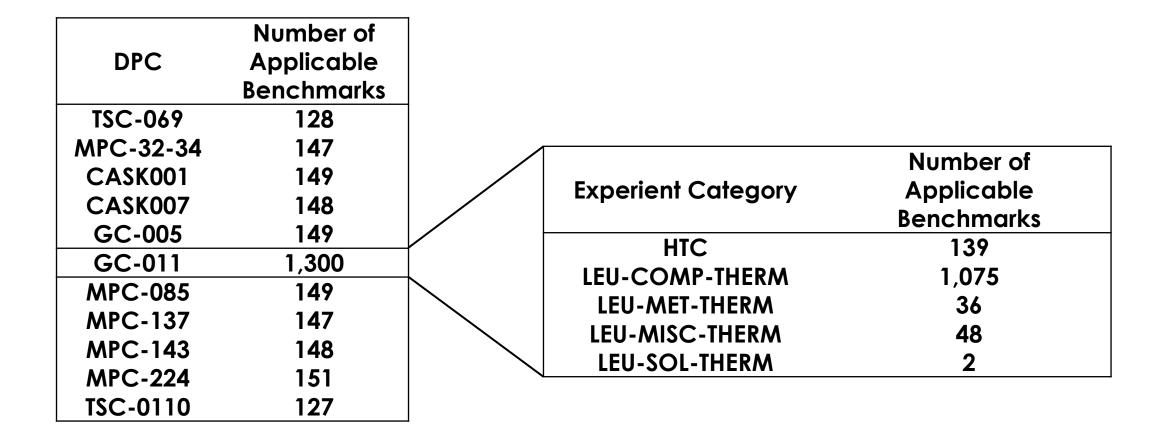
- 11 total MPC-32 systems were considered
 - TSC-069 was used to establish parameters for effective TSUNAMI-3D calculations, as discussed in previous presentation
 - Canisters included Westinghouse 17×17 and Combustion Engineering 16×16 fuel assemblies
- 1 MPC-32 (GC-011) contains damaged fuel assemblies which are modeled as a fresh fuel

Cask Identifiers				
TSC-069	MPC-32-34	CASK001		
CASK007	GC-005	GC-011		
MPC-085	MPC-137	MPC-143		
MPC-224	TSC-0110			

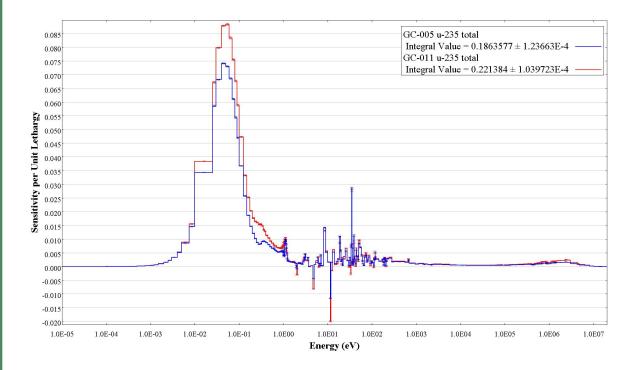
Critical experiment suite

- Experiments with sensitivity data available pooled from VALID, ICSBEP Handbook, and ORNL-generated HTC models
- Over 2,300 experiments from LEU, MIX, and PU categories

Experiment Categories	Number of SDFs	Experiment Categories	Number of SDFs
LEU-COMP-THERM	1,163	MIX-MISC-FAST	2
LEU-MET-THERM	79	MIX-SOL-THERM	42
LEU-MISC-THERM	48	PU-COMP-FAST	5
LEU-SOL-THERM	113	PU-COMP-INTER	1
HTC	155	PU-COMP-MIXED	8
MIX-COMP-FAST	3	PU-COMP-THERM	16
MIX-COMP-THERM	249	PU-MET-FAST	82
MIX-MET-FAST	36	PU-MET-INTER	1
MIX-MET-INTER	2	PU-SOL-THERM	346



- Each of the 11 applications compared with each of the 2,351 critical experiments
- For applications with only SNF isotopics:
 - 127 to 151 applicable benchmarks
 - All HTC experiments
- For application with SNF and fresh fuel:
 - 1,300 benchmarks
 - Marked increase due to applicability of many fresh fuel experiments


c_k results (continued)

c_k results (continued)

 Modest increases in ²³⁵U and ²³⁸U sensitivity caused by fresh fuel in the model significantly increase contribution to c_k

GC-005		GC-011	
Isotope	c _k contribution	Isotope	c _k contribution
²³⁵ U	0.3308	²³⁵ U	0.5443
²³⁸ U	0.2955	²³⁸ U	0.3389
¹ H	0.0478	¹ H	0.0491
¹⁶ O	0.0165	¹⁶ O	0.0201

8

Conclusions

- Critical experiment selection can be performed with S/U techniques for as-loaded canisters in UNF-ST&DARDS
- Sufficient benchmark experiments exist to support validation
 - Additional MOX experiments that are a good match for commercial SNF would be a benefit to provide independent data
- S/U techniques identify different pools of experiments for different systems
 - More LCT experiments for system including fresh fuel, as expected
- Process amenable to automation within UNF-ST&DARDS

Questions?

The preparation and presentation of this paper was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy (DOE). Development of the criticality safety analysis capabilities in UNF-ST&DARDS was accomplished with funding from the DOE Office of Nuclear Energy (NE).

