Criticality Safety Refinement at the MOX Fuel Fabrication Facility

Presented at the
American Nuclear Society: 2009 Annual Meeting
“Advancing Nuclear Technology for a Greater Tomorrow”
Atlanta, Georgia
June 16, 2009

James J. Bazley / Michael J. Shea / Robert G. Foster

Shaw AREVA MOX Services, LLC
P.O. Box 7097, Aiken, SC 29804-7097
What is the MOX Project?

- **Mission**
 - Convert 34 metric tons of surplus weapons-grade plutonium to mixed oxide (MOX) fuel for use in U.S. commercial power reactors
 - Once irradiated, plutonium will meet the spent fuel standard—making it as inaccessible and unattractive for use in weapons

- **Impact**
 - Total lifetime cost $4.8 billion plus $200-300 million/year to operate
 - Removes about 10,000 warheads from the nuclear arsenal
 - Eliminates $500 million/year in security costs
 - Provides clean, carbon free energy that offsets over $21 billion in imported oil costs at $48/barrel (or $60 billion at $140/barrel)
MOX Safety Fuels the Future

PuO₂

Dissolution

Purification Cycle

PuO₂ Conversion

Powder Master Blend & Final Blend Production

Pellet Production

Rod Production

Fuel Rod Assembling

Depleted UO₂

MOX Process (MP)

Aqueous Polishing (AP)

PuO₂

La Hague

MP Reference Plant

630 miles

Paris

Melox

MOX Fuel Assemblies

Ga, Am, U impurities

Polished PuO₂
Unique Aspects

• DOE funded with DOE oversight
 – **BUT** NRC licensed and regulated
• Weapon-Grade Pu versus Reactor-Grade
• DCP/HU Tables summarize NCSEs instead of NUREG-1718/1520-type Risk Scoring
• Highly automated process
 – 40,000 Control Inputs/Outputs
 – 80 non-safety PLCs
 – 36 safety PLCs

MOX Safety Fuels the Future
Timeline Overview

- March 1999 – MOX Contract Awarded
- February 2001 – Construction Authorization Request Submitted
- March 2005 - NRC Issues Construction Authorization
- September 2006 - License Application and Integrated Safety Analysis Summary Submitted
- August 2007 - Construction Starts
- March 2009 – Response to NRC’s First Round of Request for Additional Information
- December 2010 – NRC to complete SER and issue License
- June 2015 - Cold Start-Up
- September 2016 - Hot Start-Up

MOX Safety Fuels the Future
Construction Statistics (as of May 31, 2008)

- **Office Space** (of 600,000 square feet)
 - Completed 262,500 square feet
 - In Process 78,000 square feet

- **Concrete**
 - Structural 51,434 cubic yards (of 170,000)
 - Unreinforced 47,238 cubic yards (of 55,800)

- **Rebar** 9,697 tons (of 35,000 tons)

- **Embedded Plates** 10,331 plates

- **Conduit** ~0 (of 500,000 linear feet)

- **Cable tray** ~0 (of 47,000 linear feet)

- **Power/control cable** ~0 (of 3,000,000 linear feet)

- **Process piping** limited (of >80 miles)

- **MOX Project Employment** 1,523
Current MOX Challenges

- Finding NQA-1 Vendors
- Obtaining Commercial Grade Dedication of non-NQA-1 Vendor Equipment
- Graded Approach to IROFS in identifying Safety Function
- Workforce Revival
 - Revival of Manufacturing Base
 - Finding expertise (replacing retiring workforce)
 - Developing off-site training to build pool of qualified individuals for operations

MOX Safety Fuels the Future
NCS Approach and Products

- Established Validation (5 AOAs in 3 reports with NRC concurrence)
- Established ~100 separate Nuclear Criticality Safety Calculations
- Generated 48 separate NCSEs that
 - Identify Criticality Safety Controlled Parameters
 - Establish Controls on Credible Events
 - Inherently Highly Unlikely Event Controls
 - Double Contingency Events
 - Explicitly show two legs of DCP
 - Provide additional control properties (Redundancy/Diversity/Margin/Failure Detection)
 - Demonstration that likelihood of all credible events is “Highly Unlikely”

Apply General Design Approach

Prepare Calculation(s)

Prepare NCSE-R

Conduct PrHA (HAZOP/What-IF)

Prepare NCSE-D

MOX Safety Fuels the Future
Actual Cell (Before Tank Placement)
NCS Program & NCSE Evolution

- **NCS Staffing**
 - Originally near 100% French
 - Augmented mix of American and French expertise
 - Transitioning to In-plant base
 - Growing new NCS Engineers

- **QA/QC inspection of NCS-controlled equipment leads to**
 - dealing with contract/equip changes
 - dealing with non-conformances

- **Continuous improvement of NCSEs to facilitate**
 - improving safety function declaration through increased equipment detail knowledge
NCS Challenges in Construction

- Application of a graded approach to quality level selection of subcomponents
 - gaskets and seals in powder QL-1 configuration-controlled components can be non-QL-1 and leak small gram quantities
 - certain structural subcomponents which do not contribute to structural and configuration-control qualification can be non-QL-1
- Commercial grade dedication when NQA-1 supplier not available
- Actual fabrication capabilities do not match idealized-modeled design and NCS calculations
 - Annular tank slight out of roundness accounted for in wall thickness tolerances
 - Cd poison sheets not continuous but rather separate sheets held in place by welding between SS covers resulting in unpoisoned dimples
 - Welding poison panels on slab tanks cause slight bulging, now accounted for in wall thickness tolerances
MOX Safety Fuels the Future

Annular Tank Placement
Construction Continues...

MOX Safety Fuels the Future
Questions?

MOX Safety Fuels the Future