Hazard Assessments & Criticality Safety Evaluations

Bob Wilson
June 2010 NCSD workshop
Criticality Safety Evaluations

Purpose

- Risk Management
 - Personnel Pretention dominant issue
 - Legal
 - Financial

- Elements
 - Analyze what can go wrong
 - Provide adequate controls to manage the risk
 - Provide path to recovery if upset occurs
Is Hazard Assessment a current issue?

- Recent site NCS assessments
 - missing credible scenarios
 - Poorly documented HA

- Oak Ridge 2008 workshop concerns
 - Facility and Operations manager complaints
 - Scenarios missed or assumptions not documented
 - Personnel risk
 - Work stoppage
Understand what can go Wrong

Criteria

☆ ANS 8.1, #4.1.2 “…it shall be determined that the entire process will be subcritical under both normal and credible abnormal conditions.”

☆ How do we determine the suite of credible abnormal conditions that must be subcritical?
 - Is personal experience and conversations with potential handlers enough?
 - Is a structured HA approach needed?
Understand what can go Wrong
Criteria

- ANS 8.19, #8.3 “The nuclear criticality safety evaluation shall be documented with sufficient detail, clarity and lack of ambiguity to allow independent judgment of the results….”

- Does this clear, unambiguous and detailed document need a structured or disciplined argument?
- Do we know when we have said enough about scenarios deemed incredible?
Analysis Basics

- Where do the pipes go?
 - Facility and Proposed Operation well understood and well described
 - Facility and operation configuration controlled

- What can go wrong?
 - Develop accident scenarios
 - Determine which accident are credible and unacceptable

- Are the Barriers to the unacceptable adequate?
 - Develop administrative or engineered barriers for each scenario remaining
 - Evaluate each barrier for quality

- Will barriers go away?
 - Are requirements for training, maintenance, COOP, etc. necessary?
Some Methods

<table>
<thead>
<tr>
<th>Process</th>
<th>What-If</th>
<th>FMEA</th>
<th>HAZOP</th>
<th>Event Tree</th>
<th>Fault Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>Checklist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td></td>
<td>Mechanical System</td>
<td>Procedure based or continuous operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Helpful Examples?

- NCSD white paper on Criticality Safety Evaluations
- NSET module 12
- Proposed NCSP data base
 - See Lori Scott
- Hopefully this workshop