Simulation of Criticality Accident Transients in Uranyl Nitrate Solution with COMSOL Multiphysics

Christopher J. Hurt
University of Tennessee
Nuclear Engineering
(contact: churt2@utk.edu)

Peter L. Angelo
Y-12, Safety Analysis Engineering

Ronald E. Pevey
U. Tennessee, Nuclear Engineering Department

Research funded by NNSA Y-12 and supported by a scholarship from the ANS Nuclear Criticality Safety Division.

Presented at the ANS Winter Meeting and Nuclear Technology Expo
San Diego, CA November 11-15

The University of Tennessee
Knoxville
National Nuclear Security Administration
Presentation Outline

• Brief background
• Model Introduction
• Governing Equations
 – Point Kinetics
 – Conjugate Heat Transfer
 – Radiolytic Gas Transport
• Results
 – SILENE benchmark
 – “Methodological” Exercise
• Conclusions
Criticality Transients in Solution

- Typical Multiphysics Reactivity Feedbacks:
 - Included in Model: Radiolytic Gas, Thermal Expansion, Temperature (Cross Sections)
 - Not included: Solution Ejection, Sloshing, Boiling, etc.
Model Introduction

• Importance:
 • Fissile solution transients often introduce a strongly time-dependent radiation source term for emergency planning, characterization of which is motivated by ANSI/ANS-8.23-2007, *Nuclear Criticality Accident Emergency Planning and Response*.
 • LA-13638 R2000, *A Review of Criticality Accidents* documents the nature and high frequency of process accidents in fissile solution or slurry.

• Purpose: Develop a “Level 1.5” model of criticality transients in solution
 – Serve as flexible & powerful intermediary between “Level 2” models with full radiation transport & CFD (FETCH) and less exhaustive “Level 1” models (AGNES, CRITEX, TRACE)
Multiphysics Model Structure

- Model Definitions
- Point Kinetics w/ Six Group Precursors
- Conjugate Heat Transfer (Conduction, Convection)
- Radiolytic Gas Migration & Dispersal
- Time-Dependent Results: Power, Energy & Temperature

COMSOL Multiphysics

Point Kinetics Parameters & Reactivity Feedback (MCNP5)

Reactivity Feedback (Doppler, Density Reduction, Void)
Point Kinetics

Neutron Kinetics Balance

\[
dP(t) = \frac{\rho(t) - \beta_{\text{eff}}}{\Lambda} P(t) + \sum_{i=1}^{6} \lambda_i C_i(t)
\]

Delayed Neutron Precursor Concentration

\[
dC_i(t) = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t)
\]

Reactivity

\[
\rho(t) = \rho_0 + \text{ramp}(t) + \alpha_T \Delta T + \alpha_V \Delta V
\]

- \(P\) fission rate (fission/s)
- \(\rho\) reactivity
- \(\Lambda\) mean neutron generation time (s)
- \(C_i\) DNP concentration (neutrons/m^3)
- \(\lambda_i\) decay constant (1/s)
- \(\beta_i\) delayed neutron fraction
- \(\beta_{\text{eff}}\) = \(\sum_{i=1}^{6} \beta_i\)

- \(T\) temperature
- \(V\) void volume

\[
\alpha_k = \frac{\partial \rho}{\partial k}
\]
Use of MCNP5

• Point Kinetics Parameters
 – Using MCNP5-1.6’s KOPTS card precursor decay rates and delayed neutron fractions (λ_i’s & β_i’s) along with mean neutron generation time (Λ) can be calculated using

• Reactivity Feedback
 – Step changes in reactivity vs. feedback parameters (void, temperature) are used to inform reactivity feedback coefficients (α_k’s)
Point Kinetics

Neutron Kinetics Balance

\[
\frac{dP(t)}{dt} = \frac{\rho(t)}{\Lambda} - \beta_{\text{eff}} P(t) + \sum_{i=1}^{6} \lambda_i C_i(t)
\]

Delayed Neutron Precursor Concentration

\[
\frac{dC_i(t)}{dt} = \frac{\beta_i n(t)}{\Lambda} - \lambda_i C_i(t)
\]

Reactivity

\[
\rho(t) = \rho_0 + \text{ramp}(t) + \alpha_T \Delta T + \alpha_V \Delta V
\]

- \(P \): fission rate (fission/s)
- \(\rho \): reactivity
- \(\Lambda \): mean neutron generation time (s)
- \(C_i \): DNP concentration (neutrons/m\(^3\))
- \(\lambda_i \): decay constant (1/s)
- \(\beta_i \): delayed neutron fraction
- \(\beta_{\text{eff}} = \sum_{i=1}^{6} \beta_i \)

\(T \): temperature
\(V \): void volume
\(\alpha_k = \frac{\partial \rho}{\partial k} \)

MCNP5

KOPTS card
Conjugate Heat Transfer

Heat Conduction & Convection

\[\dot{\rho} C_p \left(\frac{\partial T}{\partial t} + u \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + Q \]

- \(T \) temperature (K)
- \(u \) fluid velocity (m/s)
- \(t \) time (s)
- \(Q \) volumetric heat source (W/m\(^3\))
- \(\dot{\rho} \) material density (kg/m\(^3\))
- \(k \) material thermal conductivity (W/m-K)
- \(C_p \) material specific heat capacity (W/kg-K)

Volumetric Heat Source

\[Q = \frac{P w_e}{V} \prod_{i=1}^{n} \cos \left(\frac{\pi x_i}{L_i} - \delta_i \right) \]

- \(P \) power (fission/s)
- \(w_e \) fission energy release (J/fission)
- \(V \) fissile solution volume (m\(^3\))
- \(x_i, L_i, \delta_i \) \(i^{th} \) dimensional position (m), length (m) and phase shift

B.C.’s

- Heat continuity at internal boundaries
- Natural Convection to air at external boundaries
- Insulation/Symmetry at center boundaries
Conjugate Heat Transfer (cont’d)

Incompressible Navier-Stokes momentum

\[
\dot{\rho} \left(\frac{\partial u}{\partial t} + (u \cdot \nabla) u \right) = -\nabla p + \nabla \left(\mu \left(\nabla u + (\nabla u)^T \right) - \frac{2}{3} \mu (\nabla \cdot u) I \right) + F
\]

\[p\] pressure (Pa)

\[\mu\] material dynamic viscosity (Pa-s)

\[F\] external body force (N/m³)

Mass Continuity

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\dot{\rho} u) = 0
\]

B.C.’s

- No slip at solution/container walls
- Outlet at external surface
Radiolytic Gas Transport

Radiolytic Gas Bubble Volume

\[
\frac{\partial V}{\partial t} + (v \cdot \nabla)V = v_e P(t) w_e (C - C_0) \theta(C - C_0)
\]

\(V \) bubble gas volume (m\(^3\))

\(v \) bubble velocity (m/s)

\(v_e \) energy-void transfer coefficient (m\(^6\)/mol-J)

\(P \) power(fission/s)

\(w_e \) energy released per fission=> (J/fission)

\(\theta(x) \) heavyside function (x>0 \rightarrow 1)

B.C.’s

- Insulation/"Reflection" at container walls
- Outlet at solution surface

Radiolytic Gas Concentration

\[
\frac{\partial C}{\partial t} + (v \cdot \nabla)C = G_H Q - \frac{C}{\tau}
\]

\(C \) radiolytic gas concentration (mol/m\(^3\))

\(C_0 \) saturation concentration (mol/m\(^3\))

\(G_H \) gas molecular energy yield (mol/J)

\(Q \propto P \) heat source (W/m\(^3\))

\(\tau \) dissolution rate (s)
COMSOL’s built-in mesh generator used to discretize the geometry and Direct solvers are utilized

- Boundary layers in narrow domains located near steep flux gradients and/or fissile solution boundaries
- Free triangular mesh elsewhere
 - “fine”-”extra fine” in core region (+refinements)
 - “coarse”-”normal” elsewhere
- Each model set up with ~10-30k elements
 - ~20 thousand DOF → <12 hr solution time
 - 1 core computer, 4 GB RAM
- Direct Solver: COMSOL’s MUMPS & PARDISIO algorithms
 - Extendable to multi-node parallel runs
Transient: SILENE LE1-641

Background
- Part of a series of criticality benchmarks performed at the Valduc facility in France
- Annular, cylindrical stainless steel reactor with control rod chamber
- 93% Enriched Uranyl Nitrate (~71 g U/l) Solution
- 2 $ reactivity ramp over t=0:20 seconds

Model
- 2-D Axisymmetric
- Variable time-stepping, error < 1e-2
Transient: SILENE LE1-641 (cont’d)
Comparison to Benchmark

![Graph showing Comparison to Benchmark](graph.png)
SILENE LE1-641: Reactivity Contributions
SILENE LE1-641: Temperature
Distribution of radiolytic gas around the first excursion peak

$t = 10.9s$

$t = 12.9s$

$t = 17.1s$
Transient: “Methodological” Exercise

- Theoretical situation postulated by the OECD/NEA Criticality Excursion Analyses Experts Group at the 2011 International Conference on Nuclear Criticality
 - 93% Enriched Uranyl Nitrate (~71 g U/l) Solution
 - Rectangular stainless steel tank with no lid, surrounded by air
- COMSOL: 3-D quarter-slice, Error < 1e-2
50¢ Reactivity Step: Excursion History

Exercise 1, 50 cent Step: Excursion Power History

Temperature vs. Time (sec):
- Blue line: Energy (fissions)
- Green line: Power (fissions/sec)
50¢ Reactivity Step: Reactivity Feedback

Exercise 1, 50 cent Step: Reactivity Contributions

- Net Reactivity
- Radiolytic Gas Feedback
- Temperature Feedback
- Reactivity Insertion

Graph showing the reactivity of a nuclear reactor over time, with contributions from net reactivity, radiolytic gas feedback, temperature feedback, and reactivity insertion.
50¢ Reactivity Step: Temperature

Exercise 1, 50 cent Step: Solution Temperature
Summary and Conclusions

• COMSOL-based models of UN solution transients were created via built-in & equation-based modeling
 – 3 coupled physics phenomena: neutronics, conjugate heat transfer & radiolytic gas transport
 – 3-D & 2-D axisymmetric geometries
 – Nuclear data derived from MCNP5-1.60 & KOPTS card

• Results are encouraging
 – Expected power excursion behavior observed for all cases
 – Good agreement between referenced benchmark SILENE LE1-641

• Plenty of room for improvement
 – Solution Sloshing (surface distortion, moving mesh)
 – Space-time neutron kinetics methodology (few-group diffusion)
 – Extension to other benchmarks (different geometries & solutions)
 – Solution boiling
Questions??

- CHANDLER, D., Spatially-Dependent Reactor Kinetics and Supporting Physics Validation Studies at the High Flux Isotope Reactor, PhD Diss., University of Tennessee (2011)
- STACEY, W., Nuclear Reactor Physics, p. 147, WILEY-VCH, Berlin, Germany (2007)