Assessment of the Need for a Criticality Accident Alarm System

Jim Baker
KAC Nuclear & Criticality Safety Engineering

Savannah River Nuclear Solutions, LLC
November 2014
Presentation Outline

• Why does a facility install a CAAS?
• What criteria determine if a CAAS is needed?
• How to approach assessing the need
• A real-world example
• Conclusions
• Questions/Comments
Where Do We Need a CAAS System? And Why?

• **ANSI/ANS-8.3:**
 - Purpose: Reduce risk to personnel
 - Installation implies non-trivial risk of an accident
 - *VERY non-trivial costs*
 - Need shall be evaluated
 - *For significant quantities of fissile material*
 - *Overall risk judgment*
 - But how do we judge the risk?
 - *LA-13638, A Review of Criticality Accidents, 2000 Revision*
Common Attributes of Process Accidents

• Communications, procedures
• Accountability & accumulation
• Vessel geometry, volume
• Operator knowledge
• New, restarted or one-of-a-kind operations
• Equipment malfunction
• Unanticipated movement of material
Observations from Accident History

- 21 of 22 process accidents occurred with solution (moderated) systems
- No accidents occurred in storage or transportation
- Local consequences only
- Avoid unfavorable geometry for high-concentration solution
Observations (cont’d)

- No accidents occurred due to equipment failure, or faulty NCS calculations
- Many occurred during non-routine operations
- Downtime was related to administrative considerations, not severity
- No new physical phenomena observed
Primary Lessons Learned

• Never a single cause
• “Human element” always present
• Risk factors:
 – Unfavorable geometry
 – Lack of written procedures, communications
 – Production pressures
 – Operations unfamiliarity w/ process
 – NCS not integrated with accountability
Primary Lessons Learned (cont’d)

• Risk factors (cont’d)
 – Operations training:
 • *Awareness of criticality hazard*
 • *Recognition & response to abnormal conditions*
 • *Stop work, alarm response & evacuation*
 • *Supervisory responsibility*
 – Are hardware failures apparent to workers?
 – Does equipment & configuration promote ease of operations?
Primary Lessons Learned (cont’d)

• Risk factors (cont’d)
 – Senior management support
 – Regulatory support and involvement
 • Sharing information
Assessment of a Specific Facility

- To judge aggregate risk consider:
 - Scope, or number of, operations
 - Inherent complexity
 - Are there changing forms? Holdup?
 - Unfavorable geometry
 - Processes subject to change?
 - Conduct of operations
 - Oversight
Aggregate Risk of a Criticality Accident is:

• Not a simple summary of NCS Evaluations
• Informed by evaluations and risk factors
 – Factors often inter-related
• Not quantitative
• Ultimately based on expert judgment
K Area Complex (Former Reactor Facility)
K Area Primary Mission: Storage of SNM
Secondary Missions: Surveillance, Testing and Recertification

PCV/SCV Leak Test Unit

Digital Radiography

Prompt Gamma

Calorimeter (MC&A)
Destructive Evaluation Glovebox
Glovebox Cutaway Diagram
Example: Assessing Need for CAAS at K Area

• Scope of operations: Storage & surveillance
• No fissile solutions; no chemical processing
• Stable material inside shipping containers
 – Rigorous accountability
 – Few opportunities for upsets
• Aggregate risk dominated by KIS activities
 – One item in KIS at a time
• Formality of operations
• Safety culture
Conclusions for K Area Operations

• For K Area:
 – Extremely low aggregate risk of criticality accident
 – CAAS installation adds:
 • Non-zero risk of injuries
 • Significant costs
 – On balance, no CAAS is recommended
Application:

• What about the facilities that you support?

• Questions / Comments?