The Development of a New Criticality Accident Alarm System
Contents

• Reasons for Development of New CIDAS®
• Requirements for New System
• Selection of Supplier
• CIDAS® MkXI versus CIDAS® MkX Design
• CIDAS® MkXI Diagnostics
• Reliability Assessment
• FPGA Development
• Radiation Tolerance Testing
• CE Marking
Reasons for Development of New System

• Current system uses very old analogue technology
 – Difficult to set up / change components correctly
 – BES cards have several switch and potentiometer settings
• Obsolescence becoming more of an issue
 – Have had to make lifetime buys of components
 – Potential reduction of expertise at suppliers. Babcock are retaining expertise in-house
• Limited audio capacity
 – Systems are becoming larger
 – Current system limited to eight 250W amplifiers
 – To increase audio capacity above the maximum need to link together 2 or more systems - expensive
Requirements for New System

• Minimal setup options, ideally using just switches
• New technology so that obsolescence is less of an issue
• Increased audio capacity to enable delivery of large systems
• Flexibility for different customers e.g. zoning and customised alarm tones
Supplier Selection

• Started in 2008
• Upgrade options
 – COTS
 – Bespoke development
• Supplier evaluations
• BARTEC-VODEC selected.
 – System has no sequential software
 – Experience in life critical oil and gas alarm systems
 – Improved performance
 – Compatible with existing detectors and speakers. Similar architecture (2003 detectors, 1002 for everything else)
 – Compatible with existing HVPSUs (except 24Vdc RESET).
CIDAS® MkXI versus CIDAS® MkX

Design

- No Change
 - Detectors
 - Annunciator
 - Speakers
 - KOWLs
 - NAWLs
- Small Modification
 - HVPSUs
CIDAS® MkXI versus CIDAS® MkX

Design

- New
 - Logic now integrated into the BES, not a separate unit.
 - BES electronics uses digital technology; easier to set up; fewer components so safety justification easier; less obsolescence issues.
 - Amplifiers scalable. Unlimited no. of amps. Includes a “hot spare” so if amp fails no need to shut down system.
 - Duplex System based on two separate systems not master/slave, so safety justification easier
 - BES only can be supplied as a single system.
 - BES zoning optional for detection and evacuation
 - UPS

www.babcock.co.uk
CIDAS® MkXI versus CIDAS® MkX

Design

Amplifiers

- Scalable (virtually unlimited output power) MkXI BES can control an unlimited numbers of audio amplifiers hence much larger numbers of loudspeakers can be used than CIDAS® MkX with max the 1600W audio power (2x 800W)

- The system includes a “hot spare” amplifier so that in the event of an amp failure, it is automatically replaced by the hot spare without having to shut down the system
CIDAS® MkXI Diagnostics

System Diagnostics
- Detectors (with optional built-in check source - MkXI)
- Detector Cable Monitoring
- Loudspeaker Cable Monitoring
- Power Supply Failures
- Logic Failures
- NAWL cabling monitoring
- Amplifier failures
- UPS monitoring

The system has been designed so that no single fault will immobilize the operation
FPGA Development

- System utilises FPGAs in several of the hardware modules
- FPGAs used to perform logic functions that were previously incorporated in the MkXI logic system
- FPGAs used to generate alarm tones
- Anti fuse FPGAs used
- Can only be configured once. Cannot be re-configured in the field
- Radiation tolerant version of the Actel device used
FPGA Development

- FPGA code needed to be developed to a rigorous process
- IEC61508, in its 2nd edition published in 2010, has for the first time incorporated a section on FPGA development
- Process developed in conjunction with Bartec Vodec & FPGA supplier Actel
- IEC61508 mandates VHDL for the alarm path
- CIDAS® MkXI uses VHDL for alarm path and diagnostics
- New process developed and documented for all CIDAS® MkXI FPGA development

```vhdl
MUX: PROCESS(I0, I1, I2, I3, A, B)
VARIABLE muxval: INTEGER;
BEGIN
muxval := 0;
CASE muxval IS
WHEN 0 => Q <= I0 AFTER 10 ns;
WHEN 1 => Q <= I1 AFTER 10 ns;
WHEN 2 => Q <= I2 AFTER 10 ns;
WHEN 3 => Q <= I3 AFTER 10 ns;
WHEN OTHERS => NULL;
END CASE;
END PROCESS MUX;
```
Reliability Assessment

- Expert third-party contracted to perform a FMEDA
- A formal approach to support claims made for system reliability and diagnostic coverage
- Conducted at the hardware component level
- Model system (Reliability Block Diagrams)
- Look at rates of failure of components of the system
- Look at effect of these failures on the system
- Determine which are safe, dangerous, detected, undetected
- Do calculations to determine PFD
Reliability Assessment

- Reliability Block Diagrams (RBD)
 Simple architecture, IEC61508\(^1\) has all the RBD methodology & equations needed (1oo2, 2oo3 including common cause analysis)

Failure Modes, Effects and Diagnostics Analysis of BES

<table>
<thead>
<tr>
<th>Failure Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revealed</td>
<td>Confidence tone stopped / started</td>
</tr>
<tr>
<td>Unrevealed</td>
<td>All failures other than Revealed</td>
</tr>
<tr>
<td>Dangerous</td>
<td>No criticality tone on demand</td>
</tr>
<tr>
<td></td>
<td>Criticality tone distorted / out of sync with other channel</td>
</tr>
<tr>
<td>Safe</td>
<td>All failures other than Dangerous</td>
</tr>
</tbody>
</table>

The BES FMEDA considers one channel + sync signals (so Dangerous Failure = this channel doesn’t alarm NOT both channels fail to alarm).

The Babcock system assessment considers both channels in the CIDAS® system (as Mk X).
FMEDA Findings:

- Some pessimisms are included in the analysis, in particular, all failures of FPGA, its power supply or its clock are assumed to be Dangerous Undetected.
- The loop test on amplifiers/loudspeakers operates less often than the current MkX (in MkXI maximum 6 minutes before fault is definitely revealed, in MkX ~2 minutes).
 [still significantly less than PTI, so is still considered to be a revealed failure]
- There are a small number of “Dangerous Undetected” failures in the BES channel.
- The proof test should be tweaked slightly from MkX.
Dangerous Undetected

- FPGA (chip, power, clock) – unknown outcome, hence (pessimistically) assumes all failures are in this category.
- Synchronisation signal fails – assumes (pessimistically) that tone is distorted + not understood.
- Detector interface signal port or connector fails to send signal to logic
- Amplifier logic input signal conditioning shorts to ground.
- Beacon control port circuitry fails to send signal to beacons.
Proof Test

Additional Tests Required:

- FMEDA analysis assumes Hot Spare amplifier operates correctly. Switching in of this amplifier needs to be included in Proof Tests.
- Confirm PA cannot override Criticality alarm.
Results

Baseline.....

- **Large system** 160 speakers per channel (320 in total) / 4 pairs of NAWLs / 30 detectors per channel (90 in total)
 1 year proof test interval, 8 hour MTTR
- Confirmed that the equipment meets SIL 2 as defined in IEC61508 when used in the standard CIDAS® architecture (2003 detection, 1002 alarm)

<table>
<thead>
<tr>
<th></th>
<th>MkX</th>
<th>Mk XI</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFD</td>
<td>0.0092</td>
<td>0.0022</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>False Alarm Rate</td>
<td>0.06</td>
<td>0.08</td>
<td><0.1 per</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Radiation Tolerance Testing

- CIDAS® MkXI system, including the new UPS, shipped to White Sands Missile Range for testing
- Subject of another paper at conference
CE Marking

- System tested at test house for CE compliance
- CE marked to the appropriate LVD and EMC directives
- Gives confidence through independent testing that the system will perform safely and reliably