INTRODUCTION OF PLUTONIUM SYSTEMS TO
THE NUCLEAR CRITICALITY SLIDE RULE

Matthieu DULUC, Dave HEINRICHS, Soon KIM,
Thomas MILLER, Cihangir CELIK, Calvin HOPPER,
Alex BROWN, Chris WILSON and Marc TROISNE
Nuclear Criticality Accident

- The release of energy as the result of inadvertently producing a self-sustaining or divergent fission chain reaction
 - Intense production of neutrons and gamma radiations

- 60 reported criticality accidents in the world

- 21 deaths
April 1997, An Updated Nuclear Criticality Slide Rule
 - ORNL/TM-13322/V1 & V2: Technical Basis / Functional Slide Rule

This document gives order of magnitude estimates of key parameters, useful for emergency response teams and public authorities:

- The magnitude of the **number of fissions** based on personnel or field radiation measurements or various critical system parameter inputs,
- Neutron- and gamma-**dose** at variable unshielded distances from the accident,
- The **skyshine** component of the dose,
- Time-integrated radiation **dose** estimates,
- One-minute **decay-gamma** radiation dose,
- **Dose-reduction factors** for variable thicknesses of steel, concrete and water.
US Slide Rule

IRSN « Slide Rule »
Long term DOE/NNSA NCSP - IRSN collaboration

NCSP wants to develop and maintain modern Slide Rule

IRSN wants to review and improve its “Slide Rule”

Proposal of a complete work, divided into several steps:

- **Step 1**: Redo with modern radiation transport tools, for the same configurations and assumptions, the calculations performed initially for the 1997 estimation of the doses

- **Step 2**: Perform additional configurations/calculations
 - New configurations (new geometry of the source, new fissile media including plutonium systems, etc.)
 - New flux-to-dose conversion factors
Step 1: Slide Rule « Initial » Configuration

Geometry: One Air (sky) layer above a ~30 cm concrete layer (ground)

Source: Unreflected spherical uranium critical system – 1 meter over the ground
- U(4.95)O₂F₂ – (H/²³⁵U = 410)
- U(5)O₂ – (H/²³⁵U = 200)
- U(93.2)O₂(NO₃)₂ – (H/²³⁵U = 500)
- U(93.2) metal
- U(93.2)_3O₈ – (H/²³⁵U = 10)

Dose Detection: 0.3 to 1200 meters between source and dose detection.

Originally, Slide Rule results from DORT (2-D deterministic code) with the Henderson flux-to-dose conversion factor
Step 1: Slide Rule « Initial » Configuration

Codes used:
- MCNP 6.1
- SCALE 6.2
- COG 11.1

Various methods used:
- 1 step / 2 steps methods
- Size and shape of the detector
- Variance Reduction technics (WWG, CADIS, etc.)

But one:
- Cross-section library data: ENDF/B-VII.1 (CE)
- Flux-to-dose conversion factor: Henderson (1959)

Results presented at the ICRS13-RPSD2016 conference (2016)
“Update of the Nuclear Criticality Slide Rule for the Emergency Response to a Nuclear Criticality Accident”
Step 2: “Introduction Of Plutonium Systems”

Geometry: One Air (sky) layer above a 50 cm concrete layer (ground)

Source: Plutonium critical system – 1 meter over the ground

Composition: ^{239}Pu metal homogeneously mixed with water

- 5 moderation ratios ($H/^{239}\text{Pu}$): 0 (=metal), 10, 100, 900 and 2000

Geometry: bare sphere, bare cylinder, steel reflected sphere

Dose Detection: 0.3 to 1200 meters between source and dose detection.

Flux-to-dose conversion factors: ANSI/HPS N13.3 standard
Step 2: “Introduction Of Plutonium Systems”

- **Codes used:**
 - MCNP 6.1
 - SCALE 6.2.1
 - COG 11.2

- **Various methods used:**
 - 1 step / 2 steps methods
 - Variance Reduction technics (ADVANTG, CADIS, etc.)

- **But one:**
 - Cross-section library data: ENDF/B-VII.1 (CE)
 - Kind of detector: a cylindrical shell with a square cross-section of 5 cm x 5 cm

Examples of prompt dose results shown for accidents that generate 10^{17} fissions
Bare sphere (prompt dose results)
Bare sphere (comparison between codes)
Bare sphere (comparison between conversion factors)
Bare cylinder (prompt dose results for Pu metal (H/Pu=0))
Sphere surrounded by a steel reflector (prompt dose results for Pu metal (H/Pu=0))

Reflector/bare sphere ratio for neutron doses calculations (COG results)

Reflector/bare sphere ratio for gamma doses calculations (COG results)

R steel = 0.1 cm

R steel = 20 cm
Conclusions and perspectives

Conclusions:

- **Introduction of plutonium systems and new flux to dose conversion factors** (more penalizing than the previous one)

- **Prompt doses**: consistency between modern codes with small discrepancies on prompt gamma due to the different codes gamma transport treatment of bremsstrahlung

- **Bare cylinders**: up to 30% compared to the bare sphere but approach, more or less quickly, to the sphere dose for long distances

- **Steel reflector**: deeply modifies doses and the effect depends on several parameters (distance, moderation ratio, type of radiation)
 - difficulties to attribute one reduction factor value to a given thickness of steel
Conclusions and perspectives

 Perspectives:

- Finalization of Step 2 for prompt doses
- Calculation of delayed gamma doses for the Step 2
- Calculation of additional configurations (impact of multiple layers of shielding, of the thickness and the composition of the surrounding environment (ground, humidity of the air, etc.))

- Opportunity to create “computer benchmarks”:
 - test and validate the various variance reduction methods
 - establish best practices for this kind of problems (e.g. fission source calculation)
- Opportunity to suggest new experiments for the validation of the tool (benchmarking effort)

- Then... beginning of the next Steps:
 - Step 3: review of the section regarding the estimation of the number of fissions
 - Step 4: addition of others sections (like actions to stop an on-going criticality accident)
 - Step 5: development of a Slide Rule "application" for a handheld device
Thank you for your attention