Developing a Streamlined Approach to Criticality Safety Analyst Training and Qualification

2017 Nuclear Criticality Safety Division Topical Carlsbad, NM

Alicia Salazar-Crockett, Mary Beth Lujan, Andrew Wysong

September 13, 2017
Agenda

• Background

• Description of the Program
 – Development
 – Priorities & Resources

• Results

• Conclusion
Background
• Autumn 2012:
 – Leverage decades of innovative and expert-based knowledge and practices
 – Developing and standardizing new approaches that aligned with professional standards
 • Consider
 – Instructional Design
 – Human Resources
 – Nuclear Industry
 – The program also had to:
 • Attract
 • Promote
 • Retain
talent in a competitive field.
...all of this and a delivery date of 4 weeks!

- LANL’s accelerated development of a CSA training and qualification program
The Program
Description of Program Development

• The Team:
 – Training Professionals
 – Criticality Safety Subject Matter Experts

• The Goals:
 – Determine the construct of the new program
 – Recommend an implementation plan for immediate- and long-term use

• The Guidelines:
 – DOE Order 426.2
 – DOE-STD-1135-99
 – LANL’s Nuclear Criticality Safety Program (SD130)
 – LANL’s Conduct of Training Manual

• The Background Information:
 – File drawers full of records and notes at organizational and individual levels
• The Work:
 – The team interviewed:
 • Criticality Safety Analysts (CSAs)
 • Other subject matter experts (SMEs)
 • Criticality Safety Managers
 • Associated stakeholders
 – To determine the specific needs of the target program

• Results validated via:
 – Performance demonstrations
 – Observations
 – Facility walk-downs
The Program – Priority & Resources

• Need for expedited approach set by:
 – Cognizant managers; first line to senior management
 • Articulated mission & operational priority
 • Provided direction & resources
 • Navigated & negotiated inter- and intra-organizational expectations and collaborations

• Boots on the ground:
 – Data calls
 – Benchmarking visits
 • DOE Los Alamos Field Office
 • Lawrence Livermore National Laboratory (LLNL)
 • Sandia National Laboratories (SNL)
 • Oak Ridge National Laboratory (ORNL)
 • Pacific Northwest National Laboratory (PNNL)
 • University of New Mexico (UNM)
Results
Program was modeled on ANSI/ANS-8.26-2007 and DOE-STD-1135-99:

• Three phase approach
 – CSA In Training (CSA-IT)
 – CSA Qualified (CSA-Q)
 – CSA Senior Qualified (CSA-SQ)

• Ten competencies
 – Nuclear Theory
 – Criticality Safety Calculation Methods
 – Critical Experiments and Data
 – Hands-on Experimental Training
 – Rules, Standards, and Guides
 – Nuclear Criticality Safety Evaluations
 – Safety Analysis and Control
 – Criticality Accident Alarm System (CAAS) and Criticality Detection Systems (CDS)
 – Accountability Practices
 – Facility Knowledge
• Instructional methods selected based on:
 – Target population
 • Both new and existing staff with unique learning styles & preferences
 – Design and methods had to be flexible
 – Availability of renowned industry experts to serve as SMEs and instructors

• In early 2013, “CSA Boot Camp” consisted of:
 – Lectures
 – Independent study
 – Performance demonstrations
 – Examinations
 – Final oral board examination (capstone)
Within first 2 years of implementation, other needs emerged:

1. Formal mentoring
 - Expert- and experience-based instructional methods
2. Developing a way to qualify analysts to independently perform work

Result of (2) was four “task qualifications” (TQs):
- Calculation Specialist (TQ/CS)
- Facility Specialist (TQ/FS)
- Independent Review (TQ/IR)
- Criticality Accident Alarm System Specialist (TQ/CAASS)
• Continuing training & biannual requalification methods incorporated early in program implementation

– Multiple training methods used:
 • Required reading
 • Briefings
 • Attendance at seminars and lectures

– Incorporated & designed to address:
 • Significant facility system and component changes
 • Procedure changes
 • Selected fundamentals
 • Applicable industry operating experience
November 2016 – major curriculum change

• Boot Camp
 – Comprehensive & unique
 – Also, costly & time consuming

• Analysis performed [again] on competency criteria vs course curricula for:
 – DOE Nuclear Criticality Safety Program (NCSP) Hands-On Course
 – UNM’s
 • Nuclear Criticality Safety (NCS) Short Course
 • Assessments & Criticality Safety Evaluations Course
 • Manager’s Workshop

• Result
 – Replacement for the CSA Boot Camp’s core academic requirements
 • LANL site requirements would still need to be addressed via local instruction & performance requirements
Conclusions
Conclusions

• The Program demonstrates valid and reliable implementation.

 – The program curricula were developed to meet specific industry criteria and unique site/facility needs.

 – The program may be consistently and repeatedly implemented.
Conclusions (2)

• The Program augments staffing requirements.
 – Enhances recruiting because it is self-driven, giving much control to the CSA-IT.
 – Enables more working resources earlier on.
 • For example, by qualifying at the task level, the CSA in training can independently perform a predefined work scope.
 – Offers progressive growth opportunities, such as:
 • CSA-IT introduces entry-level requirements, including DOE Nuclear Criticality Safety Engineer Training (NCSET) training modules [10]—available complex-wide—and LANL requirements;
 • CSA-Q consists of site-level competency requirements categorized as core and facility specific; and
 • CSA-SQ includes expanded and applicable site-wide requirements.
 – Provides a robust continuing training program with weekly and monthly sessions
Conclusions (3)

• The Program has operational impact.
 – It is agile, flexible, and dynamic.

 – Site, facility, programmatic, and personal needs and changes are easily addressed.
 • For example, performance requirements are assigned by NCS management based on need and may include individual professional goals, such as the CAASS.
 • It may also incorporate background, i.e., chemical engineering or operations experience.

 – Previous training and qualification records from other sites/organizations can satisfy LANL requirements
Conclusions (4)

• The Program shares and takes advantage of all resources.

 – Existing industry training is used where appropriate.

 – NCS management can assign the CSA to areas based on
 • Organizational need
 • CSA expertise
 • Growth opportunity

 – Provides breadth and depth.

• Colleagues from Sandia and National Security Technologies (NSTec), LLC, attended 2016 courses.
Questions?
Program was modeled on ANSI/ANS-8.26-2007 and DOE-STD-1135-99:

- **Three phase approach**
 - CSA In Training (CSA-IT)
 - CSA Qualified (CSA-Q)
 - CSA Senior Qualified (CSA-SQ)

- **Ten competencies**
 - Nuclear Theory
 - Criticality Safety Calculation Methods
 - Critical Experiments and Data
 - Hands-on Experimental Training
 - Rules, Standards, and Guides
 - Nuclear Criticality Safety Evaluations
 - Safety Analysis and Control
 - Criticality Accident Alarm System (CAAS) and Criticality Detection Systems (CDS)
 - Accountability Practices
 - Facility Knowledge