Inventory-Based Computational Analysis of Hanford Tank Waste
Tank Farms Overview
HANFORD TANK WASTE

- Product of more than 40 years of plutonium production
- 3 chemical separations processes
- Many distinct waste streams and compositions
- 56 million gallons in 177 tanks, including:
 - Various metals
 - Fission products
 - Uranium (~600 metric tons)
 - **Plutonium** (670 kg)
- Criticality safety analysis based on presence of absorber metals:
 - Aluminum
 - Chromium
 - Iron
 - Manganese
 - Nickel
 - Silicon
TANK WASTE PHASES

- **Supernatant**
 - Liquid phase
 - Minimal Pu (~3.5 kg, less than 0.5% of total)

- **Saltcake**
 - Crystallized liquids from Evaporator concentration
 - Majority sodium, much lower Pu masses

- **Sludge**
 - Non-water soluble compounds
 - Large amounts of iron, manganese, aluminum
 - Holds majority of tank plutonium
THE BEST-BASIS INVENTORY (BBI)

- Database of best-estimate tank inventories for:
 - 46 radionuclides
 - 25+ chemical analytes
- Estimates from tank history, sample data, fuel depletion calculations
- Many distinct purposes:
 - Retrieval / transfer planning
 - Chemical compatibility analysis
 - Safety basis requirements (H₂ generation)
 - Criticality safety (Pu & absorber masses)
- Tank contents split into “layers” [currently: 566]
 - Often represent one origin / composition
Tank-Specific Calculations
CALCULATION DESIGN AND METHOD

- One calculation input per tank layer:
 - Infinite-geometry, homogenous MCNP model
 - Element / isotope mass ratios derived BBI inventory
- Inner search on water fraction (wt%) → find maximum k_{eff} (optimal moderation)
 - Water fraction is a BBI parameter
 - Realistic waste contains H in compounds (mainly hydroxides)
 - Highly overmoderated – analysis assumptions very conservative
- Outer search on plutonium mass multiplier → max k_{eff} in target range
 - Relative increase of Pu mass (versus other solids)
 - Calculations performed for all sludge, saltcake layers
Include only Pu and credited absorbers
- Ignores other, large-mass waste constituents (Na)
- Absorbers modelled as oxides

No layer with Pu multiplier < 1.0
Five layers < 2.5x
- All associated with Plutonium Finishing Plant
- Already known to criticality safety
 - Controls on mixing tank solids
Five layers between 2.5 and 5.0
Large margin on most tank farms Pu
- 75% of Pu located in layers > 5x
- 50% of Pu located in layers > 10x
MODEL #2 – REDUCTION BY SOLUBILITY FACTORS

- Current evaluation applies element-specific reduction factors
 - Bounds Pu/absorber separation due to dissolution
 - Largest reductions on aluminum content
- General reduction in calculated Pu multipliers
 - 88% of plutonium in layers > 2.5 x
 - 75% of plutonium in layers > 5 x
- Largest change in high-aluminum layers
 - Mainly cladding waste → low Pu content

Absorber Mass Reduction

<table>
<thead>
<tr>
<th>Element</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>98 %</td>
</tr>
<tr>
<td>Cr</td>
<td>70 %</td>
</tr>
<tr>
<td>Fe</td>
<td>10 %</td>
</tr>
<tr>
<td>Mn</td>
<td>12 %</td>
</tr>
<tr>
<td>Ni</td>
<td>50 %</td>
</tr>
<tr>
<td>Si</td>
<td>70 %</td>
</tr>
<tr>
<td>Zr</td>
<td>18 %</td>
</tr>
</tbody>
</table>
MODEL #3 – REDUCTION BY BBI WASH FACTORS

- **Tank-specific estimates for removal fractions**
 - Developed for retrieval process modelling
 - Mainly based on experimental data from tank samples
 - Accounts for different chemical components

- **NCS solubility assumptions nearly always individually bounding for each element**
 - Small fraction of tank/absorber combinations have BBI predict more individual removal
 - Assumption was: solubility factors were conservative taken together, over all absorbers

- **Confirmed criticality safety assumptions bound tank-specific removal fractions.**
 - Only 6 layers had the BBI values giving a more conservative final composition
 - All had very small Pu masses (< 10 g) or high Pu mass multipliers (> 200x)
 - No criticality safety significance
 - Mainly Al cladding waste (98% vs. 100% removal of Al)
MODEL #4 – ADDING URANIUM INVENTORIES

- **600 metric tons** uranium in tank waste
 - Most (75%) at or just below natural enrichment
 - Maximum enrichment – 1.02% 235U
 - Single primarily-233U layer
 - Likely mixed with other waste during C Farm retrieval
- Previous analysis discussed U and Pu separately
- Adding U into calculations already applying solubility factors (absorber reduction):
 - 70% of plutonium in layers > 10 x
 - 80% of plutonium in layers > 5 x
 - 92% of plutonium in layers > 2.5 x
 - Only 4 layers still between 1x and 2x → all PFP-related (minimal U content)
Previous Tank Waste Models
“CARTER MODEL” (1979)

- Created from the four available tank samples
 - 2 from AX-104, one each from A-106 and C-106
 - Took bounding values for each absorber

- Composition modified to due to code limitations
 - Mercury cross-sections not available
 - Limit of 10 isotopes in one calculation
 - Hg, Cr, Ni proportionally re-assigned to Mn

- Pu concentration varied until $k_\infty < 1.0$ for all H-to-X

- 1979 calculated value was 3 g Pu/L, limits based on 1 g Pu/L
 - Using MCNP 6.2 and ENDF/B-VII.1 (without isotope substitutions):
 - 2.46 g Pu / L at $k = 0.935$
 - 2.83 g Pu / L at $k = 1.0$

<table>
<thead>
<tr>
<th>Composition (g/L)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>100</td>
</tr>
<tr>
<td>Fe</td>
<td>100</td>
</tr>
<tr>
<td>Na</td>
<td>50</td>
</tr>
<tr>
<td>Mn</td>
<td>5</td>
</tr>
<tr>
<td>Si</td>
<td>35</td>
</tr>
<tr>
<td>Cr</td>
<td>3</td>
</tr>
<tr>
<td>Hg</td>
<td>0 or 10</td>
</tr>
<tr>
<td>Ni</td>
<td>4</td>
</tr>
<tr>
<td>NO₃</td>
<td>13 or 130</td>
</tr>
<tr>
<td>O (compounds)</td>
<td>200</td>
</tr>
</tbody>
</table>

CARTER MODEL (1979)

Composition (g/L)
- Al 100
- Fe 100
- Na 50
- Mn 5
- Si 35
- Cr 3
- Hg 0 or 10
- Ni 4
- NO₃ 13 or 130
- O (compounds) 200
“CONSERVATIVE WASTE MODEL” (1993)

- Primarily derived from sample data
 - 28 sample analyses, covering 16 tanks
 - Some input from overall tank inventory estimates
- Developed to produce smaller macroscopic absorption cross-section than actual waste
 - 2002 report compared with against inventory data for all tanks with more than 20 kg Pu
- Calculated subcritical limit of 2.6 g Pu / L.
 - Part of criticality safety evaluation until 2015

Composition (wt%)

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>40.7</td>
</tr>
<tr>
<td>P</td>
<td>6.9</td>
</tr>
<tr>
<td>Si</td>
<td>3.8</td>
</tr>
<tr>
<td>Na</td>
<td>21.5</td>
</tr>
<tr>
<td>Al</td>
<td>7.2</td>
</tr>
<tr>
<td>Fe</td>
<td>19.9</td>
</tr>
</tbody>
</table>

Solids density: 1200 g/L
Search results give a layer-specific measure of neutron absorption in solids:

How do the assumptions from older waste models compare?

<table>
<thead>
<tr>
<th>Waste Solids Model</th>
<th>Subcritical Pu Concentration</th>
<th>Fraction of Pu Mass Bounded by Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter (1979)</td>
<td>1.0 g/L [derived operating limit]</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>2.8 g/L [MCNP 6.2 – 2018]</td>
<td>92%</td>
</tr>
<tr>
<td></td>
<td>3 g/L [GAMTEC II – 1979]</td>
<td>85%</td>
</tr>
<tr>
<td>CWM (1993)</td>
<td>2.6 g/L</td>
<td>97%</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• With modern computer speeds, a new tool to look at criticality safety in tank waste:
 - Pu multiplier gives a more definitive assessment of subcritical margin
 - Compare specific effects of different modelling assumptions
 - Identify any additional layers of potential interest

• Assumptions used to generate previous sets of absorber models shown to bound nearly all tank farms Pu

• Calculations are part of larger effort to focus analysis more onto specific tanks of greatest concern
Questions?