PROMPT NEUTRON DECAY CONSTANT MEASUREMENTS ON THE KRUSTY COLD CRITICAL CONFIGURATION

2018 ANS Winter Meeting and Nuclear Technology Expo

George McKenzie

November 2018
Overview

• What is KRUSTY?
 o Reactor purpose
 o Phases of experimentation

• What is Rossi-α?
 o Method
 o Why measured?

• Specifics for experiment
 o Detector Placement
 o Execution
 o Results

• Comparison to simulation

• Conclusions
What is KRUSTY? – Reactor Purpose

- Kilopower sized reactor intended for manned deep space missions.
- Concept uses heat pipes to generate electricity.
- Nuclear component is BeO reflected HEU.
- Full scale testing of nuclear component completed early 2018.
What is KRUSTY? – Phases of experimentation

- **Phase 0**
 - Fe surrogate of the core used for systems checks and build practice.
 - DU surrogate core used for systems checks with chemically identical surrogate.
 - Electrically heated system test.
- **Phase 1**
 - Component Criticals.
 - HEU core, reflectors, and absorbers only.
 - Worth of reflector and absorber components measured.
 - Rossi-α measurements performed.

Assembly of the DU Surrogate
What is KRUSTY? – Phases of experimentation

• **Phase 2**
 o Cold Critical
 o Add in heat pipes, electrical generation equipment, and vacuum chamber.
 o Worth measurements of removable components measured.

• **Phase 3**
 o Incremental increase in heat generation through three different “Free Run” scenarios.

• **Phase 4**
 o Full power test. (~800°C)
 o 28 hour continuous test.
 o Examined transient scenarios.

Transition to Cold Critical Configuration
What is Rossi-α? - Method

- The prompt neutron decay constant α is the rate at which the prompt neutron population changes as a function of time.
 \[\alpha = \frac{k_p - 1}{l} \]
- Measureable quantity is α, used to infer parameter of interest neutron lifetime, l.
- At delayed critical, this constant is the α-eigenvalue of the system.
 \[\alpha_{DC} = \frac{-\beta}{l} \]
- At prompt critical α = 0.

Example Rossi-α Distribution
What is Rossi-α? - Method

- The prompt neutron decay constant is calculated by measuring the correlations between neutrons emitted by a fissioning system.
- Rossi-α is an autocorrelation of neutron detection events.
 - Combination of the probability of detecting a neutron from a fission chain and also detecting a second neutron from that same chain.

- \[p(t) = A + Be^{\alpha t} \]
 - A is related to the population of accidental neutrons.
 - Typically related to the source and multiplication of the system.
 - B is related to the population of correlated neutrons.
 - By definition correlated neutrons must be prompt.
 - The probability of detecting correlated neutrons drops exponentially with time (if the system is below prompt critical), so the exponential term is included with the correlated term.
What is Rossi-α? - Method

- The α-eigenvalue can be determined two ways.
 - Direct measurement at delayed critical.
 - Inference using two or more subcritical data points.
 - Plot α versus the inverse count rate.
 - The y-intercept is the α-eigenvalue.
 - Example for the polyethylene class foils experiment shown on the right.

Example for the polyethylene class foils experiment.
What is Rossi-α? – Why measured?

- Rate at which the prompt neutron population decays as a function of time.
- At DC comprises the fundamental α-eigenvalue.
- Useful for neutron spectrum hardness comparisons in critical experiments.
- Useful for determining neutron lifetime of a system.
- Used to measure subcritical reactivity in a system.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>α_{DC} (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lady Godiva</td>
<td>-1.1×10^6</td>
</tr>
<tr>
<td>Godiva IV</td>
<td>-8.4×10^5</td>
</tr>
<tr>
<td>Topsy (Oy(94) w/ NU reflector)</td>
<td>-3.7×10^5</td>
</tr>
<tr>
<td>Zeus</td>
<td>-8.9×10^4</td>
</tr>
<tr>
<td>Zeus LEU Lead</td>
<td>-5.6×10^4</td>
</tr>
<tr>
<td>Zeus HEU Lead</td>
<td>-3.8×10^4</td>
</tr>
<tr>
<td>Sheba</td>
<td>-200</td>
</tr>
<tr>
<td>Poly Class Foils</td>
<td>-199.4</td>
</tr>
</tbody>
</table>
Specifics for experiment – Detector placement

- Consists of largely commercial off the shelf equipment.
- List-mode module is custom LANL designed and built module.
 - Time tags detection events.
- **Detector is Reuter-Stokes 40 atm 0.25” diameter, 4” long 3He detector.**
 - Other detectors could be used.
 - Chosen because of its fast recovery and size.
Specifics for experiment – Detector placement

- For this system, the detectors were placed into the heat pipe channels of the core.
- Closest location feasible to the core.
- Approximately centered active region on the core.
- Radially spread out.
Specifics for experiment – Execution

- **Reactivity on this system adjusted in two ways.**
 - By adjusting the total height of BeO on the machine.
 - By manipulating the critical assembly machine to adjusted the “effective” height of BeO around the core.
- **Three configurations measured.**
 - Two with 10.375” BeO on Platen.
 - 25 mils below critical position.
 - 35 mils below critical position.
 - One with 10.25” BeO on Platen
 - subcritical

BeO reflector loaded onto the Platen.
Specifics for experiment – Results

- $\alpha_{DC} = -1109.4 \pm 14.5 \text{ s}^{-1}$
- Value determined through extrapolation of measured data.
- High count rate near critical (and thermal system) saturated detectors, so measurement was not made at DC.

<table>
<thead>
<tr>
<th>1/CR</th>
<th>α (s$^{-1}$)</th>
<th>p ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25 mils</td>
<td>2.42E-05</td>
<td>-1218.9</td>
</tr>
<tr>
<td>-35 mils</td>
<td>3.38E-05</td>
<td>-1268.4</td>
</tr>
<tr>
<td>10.25” BeO</td>
<td>3.98E-05</td>
<td>-1289.5</td>
</tr>
</tbody>
</table>

y = -5E+06x - 1109.4
$R^2 = 0.991$
Comparison to simulation

- **Measured value**
 - $\alpha_{DC} = -1109.4 \pm 14.5$ s$^{-1}$

- **Calculated value**
 - $\alpha_{DC} = -1317.7 \pm 7.6$ s$^{-1}$

- **About 18% difference**
 - Typically see discrepancy near 10%.
 - Simulation typically calculates high.
 - Likely caused by the value being rather small already and the exclusion of the detectors from the model.
 - Also caused by model not being exactly 1.
 - Overall adequate agreement.
Conclusions

- **Measured value**
 - $\alpha_{DC} = -1109.4 \pm 14.5$ s$^{-1}$
 - Compares well to solution systems.
 - Because of thick thermalizing BeO reflection.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>α_{DC} (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lady Godiva</td>
<td>-1.1×10^6</td>
</tr>
<tr>
<td>Godiva IV</td>
<td>-8.4×10^5</td>
</tr>
<tr>
<td>Topsy (Oy(94) w/ NU reflector)</td>
<td>-3.7×10^5</td>
</tr>
<tr>
<td>Zeus</td>
<td>-8.9×10^4</td>
</tr>
<tr>
<td>Zeus LEU Lead</td>
<td>-5.6×10^4</td>
</tr>
<tr>
<td>Zeus HEU Lead</td>
<td>-3.8×10^4</td>
</tr>
<tr>
<td>Sheba</td>
<td>-200</td>
</tr>
<tr>
<td>Poly Class Foils</td>
<td>-199.4</td>
</tr>
</tbody>
</table>

KRUSTY
This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
Questions?
Theory – Prompt Neutron Decay Constant (cont.)

Correlated Neutrons
• Neutrons that have a common fission ancestor.
• Must all be prompt neutrons.

Accidental Neutrons
• Neutrons that do not have a common fission ancestor.
• Include delayed neutrons, source neutrons, and prompt neutrons from different fission chains.

Every branching signifies a fission.