

EST.1943

Water Ingress from Fire the Suppression System

Is it credible?

Mandy Bowles Tomaszewski

History

- Fire Suppression System
- 2014 operations paused to reconsider water ingress from the FSS
 - -ESS-14-002 Implemented
 - 2 different generic limit sets applied
 - -~ single sub-critical parameters from ANSI 8.1
 - Metal or solution

Credible Water Ingress - Take #1

- Standard calculation to decipher how much water from fire suppression system can enter a glovebox.
 - Based on a 2-hour release event
 - NM Tech experiments
- Typical Calculational results
 - ~13 gallons ingress
 - Less than 2-inches depth
- Flooded containers
 - Administrative controls
 - e.g. Limited Tray Height, Open Container Volume, Total Container Volume, Seismically Qualified Glove Boxes etc.

Credible Water Ingress - Take #2

- Use standard calculation(s) to decipher how much water from fire suppression system can enter a glovebox
- Water does not directly enter glove ports based on sprinkler location
 - Initial parabolic trajectory followed by a straight fall
 - Based on a 2-hour release event
 - NM Tech fire experiments
- Typical Calculational results
 - –Less than 3 gallons
 - -FAR Less than 2 inches depth
- Flooded containers
 - Thickness of the glove port provides sufficient distance to preclude water ingress
 - Administrative controls
 - Limited tray height

Credible Water Ingress - Take #3

- Fire Protection Program (DSA)
 - Combustible Loading Control Program
 - Implemented in both the room and gloveboxes
 - Limit the quantity and provides separation of combustible materials
 - Ignition Control Program
 - Evaluates new heat generating devices
 - -Fire suppression sprinkler system and water supply
 - Limit the size of a fire
 - -Fire detection and alarm system
 - Laboratory space sprinklers
 - Thermal detectors in each glovebox to initiate a fire alarm

Credible Water Ingress - Take #3 (Continued)

Fire inside a glovebox

- 94 kW required to activate individual sprinkler head
- Energy required to breach to glove and activate FSS >> 100 kW
- Combustible loading limit <100 kW
- Large Fire Quenched due to a lack of oxygen
- Small fire Not enough energy to sustain
 - NM Tech Calculations
- Water ingress resulting from a fire outside of the glovebox judged to be not credible to cause a criticality

Fire outside a glovebox

- Fire must be located directly below glovebox to damage gloves or glovebox
- Fire would be quenched by fire suppression system before glove or glovebox damage
- Water ingress resulting from a fire inside or outside of the glovebox is judged to be not credible to cause a criticality

Credible Water Ingress - Take #3 (Continued)

Seismic Events without Fire

 FSS safety significant and can be credited to maintain function and remain intact

Seismic events and Fire

- Post-seismic fires are not expected to occur in the facility (DSA)
- Requires certain final configurations after seismic event.
- -Fire suppression system minimizes fire
- Overhead objects cannot compromise glovebox integrity during and after a seismic event
 - Facility construction Seismically rated systems
 - Combustible Loading Limits
 - No Combustible Gases
 - Laminate, shatter-resistant glass windows
- Non-fire-related water ingress to a glovebox resulting from an earthquake is not credible to cause a criticality

Questions?

FMOR process at LANL

Mandy Bowles Tomaszewski

EST.1943

Annual Operational Review Form

- 2014 Form
 - -Four areas of verification and review.
 - -Three Signatures
 - Part of Facility Implementing Document
- 2019 Form
 - -2 sections
 - Document Review
 - Emergent Issues
 - Field Review
 - 24 total questions
 - -Three Signatures
 - Form and Emergent Issues Memo Owned by Criticality Safety

Emergent Issues Memo

The issues were identified during assessments, walk-downs, corrective actions management, fact findings, etc. The memo should be referred to while performing a Fissionable Material Operational Review and identify issues by entered into the corrective actions system to be addressed.

Includes issues like

- Presence of permanent or temporary radiation shielding
- Terminology
 - Waste
 - Staging
- CSP Format
- Engineered Requirements