Redux Analysis of D₂O Reflected Plutonium Foils at Low Temperature

William J. Zywiec, Anthony J. Nelson

November 19, 2019

LLNL-PRES-#######

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

- "Small critical mass" concepts
 - Thin foils
 - Non-absorbing low temperature moderating reflectors

E. D. Clayton

ANOMALIES OF NUCLEAR CRITICALITY

- Jarvis and Mills performed experiments at Los Alamos in the **1960s**
 - Results indicated that critical masses of 290-384 grams could be achieved with ²³⁵U (93%), polyethylene sheets, and beryllium reflector blocks in a cubic array
 - Experiments performed on the Comet vertical lift machine

Pacific Northwe Proudly Operated by Battelle Since 1965 E. D. Clayton **ANOMALIES OF** NUCLEAR CRITICALITY

- Jarvis and Mills performed experiments at Los Alamos in the **1960s**
 - Results indicated that critical masses of 290-384 grams could be achieved with ²³⁵U (93%), polyethylene sheets, and beryllium reflector blocks in a cubic array
 - Experiments performed on the Comet vertical lift machine
 - They also performed calculations showing that the critical mass could be as low as 250 grams if the ²³⁵U fuel were redistributed

Fig. 4. The Comet critical assembly machine showing the minimum critical mass experiment with the core in the disassembled position.

Table I.	Critical	Conditions	for a	Hydrogenous	Core	in a	. Thick	Beryllium Ref	lector
----------	----------	------------	-------	-------------	------	------	---------	---------------	--------

Moderator Material	Fuel Cell Cross Section (In.)	Fuel Cell Height (In.)	Beryllium Reflector Thickness (In.)	Weight of Core Moderator Material (kg)	Average Moderator Thickness Between Foils (In.)	Critical Mass 235 _U (grams)	Atomic Ratio H/235U
Polyethylene Density = 0.961 g/cc	6.0 x 6.125 "	5•75 4•75 3•75	12.5	3.327 2.749 2.170	0.271 ^{**} 0.224 ^{**} 0.167 ^{**}	299 292 301	375 316 242
Polyethylene Density = 0.928 g/cc	6.0 x 6.125 "	5•75 4•75 3•75	12,5 "	3.215 2.656 2.097	0.256** 0.211** 0.167**	301 296 303	359 301 232
Polyethylene Density = 0.947 g/cc	6.5 x 6.625 "	6.75 5.75 4.75 3.75	12.0	4.506 3.839 3.171 2.504	0.257 0.230 0.200 0.200	349 328 31 3 349	446 393 340 241
Polyethylene Density = 0.888 g/cc	8.0 x 8.125 "	7.75 6.50 5.00 3.63 2.75 2.25	11.5	7.331 6.148 4.729 3.429 2.601 2.128	0.625 0.520 0.500 0.322 0.275 0.225	456 422 386 360 352 376	540 489 411 318 248 190
Lucite Density = 1.132 g/cc	8.0 × 8.125 "	8.00 6.56 5.20 3.76	11.5 "	9.670 8.034 6.248 4.463	0.625 0.540 0.420 0.342	466 433 417 460	390 349 282 182

** These six stackings had uranium foil on all six sides of the fuel cell.

- Olson and Robkin published a paper **1970** called "A New Small Mass Critical Configuration" in the ANS Transactions
 - Modeled a sheet of $^{\rm 235}{\rm U}$ or $^{\rm 239}{\rm Pu}$ surrounded by ${\rm D_2O}$
 - Temperature of core and moderator was lowered to 4K (boiling point of ⁴He)
 - With and without edge reflection around D_2O

Fig. 1. Critical mass of ²³⁵U as a function of core height for assumed core neutron temperatures of 10, 20, and 30°K.

- In 1977, Yates published a paper, citing Olson and Robkin's paper.
 - Modeled spherical shells of ²³⁵U and ²³⁹Pu instead of thin sheets
 - Did not use edge reflectors
 - Did not model the system at low temperature

Fig. 1. Critical mass of ²³⁵U as a function of core height for assumed core neutron temperatures of 10, 20, and 30°K.

- In 1977, Yates published a paper, citing Olson and Robkin's paper.
 - Modeled spherical shells of ²³⁵U and ²³⁹Pu instead of thin sheets
 - Did not use edge reflectors
 - Did not model the system at low temperature
 - "Critical masses" were slightly lower than Olson and Robkin's results at room temperature

Fig. 1. Critical mass of ²³⁵U as a function of core height for assumed core neutron temperatures of 10, 20, and 30°K.

- In 1977, Yates published a paper, citing Olson and Robkin's paper.
 - Modeled spherical shells of ²³⁵U and ²³⁹Pu instead of thin sheets
 - Did not use edge reflectors
 - Did not model the system at low temperature
 - "Critical masses" were slightly lower than Olson and Robkin's results at room temperature
 - Performed a hand calculation to determine the "critical mass" at 4K

Fig. 1. Critical mass of ²³⁵U as a function of core height for assumed core neutron temperatures of 10, 20, and 30°K.

- Jarvis and Mills critical masses (1967)
 - 290-384 grams with ²³⁵U, polyethylene, and beryllium blocks
 - Experimentally validated results
 - Used a design that is consistent with what most nuclear criticality safety engineers consider to be optimal conditions for criticality

- Jarvis and Mills critical masses (1967)
 - 290-384 grams with ²³⁵U, polyethylene, and beryllium blocks
 - Experimentally validated results
 - Used a design that is consistent with what most nuclear criticality safety engineers consider to be optimal conditions for criticality
- Olson and Robkin "critical masses" (1970)
 - 35 grams with ²³⁵U and 22 grams with ²³⁹Pu at 4K (65 cm of D₂O reflection)
 - Models only

- Jarvis and Mills critical masses (1967)
 - 290-384 grams with ²³⁵U, polyethylene, and beryllium blocks
 - Experimentally validated results
 - Used a design that is consistent with what most nuclear criticality safety engineers consider to be optimal conditions for criticality
- Olson and Robkin "critical masses" (1970)
 - 35 grams with ²³⁵U and 22 grams with ²³⁹Pu at 4K (65 cm of D₂O reflection)
 - Models only
- Yates "critical mass" (1977)
 - 15.6 grams with ²³⁹Pu at 4K (220-240 cm box of D₂O)
 - Models only
 - No low temperature calculations

- Anomalies of Nuclear Criticality
 - 16 grams of $^{239}\mbox{Pu}$ inside of a 55-gallon drum filled with D_2O at 4K

- We reperformed Yates' calculations for ²³⁹Pu with MCNP6.2 and ENDF/B-VII.1 nuclear data.
 - 1. Initial calculations were performed at room temperature with S(a,B) cross sections
 - 2. Used *makxsf* tool to adjust cross section temperatures to 4K
 - 3. Did not use S(a,B) cross sections at low temperature

D₂O reflected ²³⁹Pu spherical shell at 4K, 220 cm edge length

D₂O reflected ²³⁹Pu spherical shell at 4K (60 cm OD)

Conclusions

- Our results show that Yates' "minimum critical mass" should have been closer to 88.4-95 grams of ²³⁹Pu, not 15.6 grams
- In the next revision of Anomalies of Nuclear Criticality, the section on small critical mass concepts should be edited
 - Other sections that reference old or outdated calculations should also be reviewed for accuracy
- There is a need for low-temperature critical benchmark experiments
 - The results of these calculations are **not accurate**
 - The density of the system was held constant, which is not realistic

Questions?

"That's bananas."

- Will Zywiec

(upon hearing about a 15.6-gram minimum critical mass for the first time)

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.