Update on Benchmark of Component Critical Configuration of KRUSTY

Kristin Smith*, Jesson Hutchinson, Theresa Cutler, and Rene Sanchez

*Texas A&M University, Department of Nuclear Engineering
Los Alamos National Laboratory, Advanced Nuclear Technology
KRUSTY Purpose

• Prototype and proof of concept for Kilopower Project
• HEU system reflected by BeO and steel
• Two Options:
 o Power source
 o Deep space probe
• Testing began Nov. 2017
 o Component critical configuration
 • BeO Worth
 • B₄C Worth
 • Benchmark configurations
• 28-hour test March 2018
Component Critical Configuration

- HEU fuel
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots
Component Critical Configuration

- **HEU fuel**
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots

Axial and Radial Views of Fuel
Component Critical Configuration

- **HEU fuel**
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots
- **BeO Reflectors**
 - Top, Bottom, and Ring
Component Critical Configuration

- **HEU fuel**
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots
- **BeO Reflectors**
 - Top, Bottom, and Rings

Radial and Axial Views of Top BeO Axial Reflector
Component Critical Configuration

- **HEU fuel**
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots
- **BeO Reflectors**
 - Top, Bottom, and Rings

Radial and Axial Views of Bottom BeO Axial Reflector
Component Critical Configuration

- **HEU fuel**
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots
- **BeO Reflectors**
 - Top, Bottom, and Rings

Radial and Axial Views of Inner BeO Reflector Rings (Cases 1 & 3)
Component Critical Configuration

- **HEU fuel**
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots

- **BeO Reflectors**
 - Top, Bottom, and Rings

Radial, Axial, and Individual Views of Outer BeO Reflector Rings (Cases 1 & 3)
Component Critical Configuration

- **25 cm HEU fuel**
 - 93.07% Enriched
 - 7.65 wt% molybdenum
 - Annulus with 8 slots
- **BeO Reflectors**
 - Top, Bottom, and Ring
- **Shielding**
 - Outer shields and multi-layered top and bottom
- **Critical Configuration (#3)**
 - 28.575 cm
 - Excess reactivity: 2.3¢
 - k_{eff}: 1.00016
Benchmark Configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Source Present</th>
<th>BeO Height (cm)</th>
<th>Top Plug Material</th>
<th>Bottom Plug Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>28.5750</td>
<td>BeO</td>
<td>BeO</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>28.8925</td>
<td>BeO</td>
<td>BeO</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>28.5750</td>
<td>BeO</td>
<td>BeO</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>28.8925</td>
<td>Al</td>
<td>BeO</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>29.2100</td>
<td>Al</td>
<td>Al</td>
</tr>
</tbody>
</table>
Benchmark Cases with AmBe Source

Case 1

Case 2

Extra Layer of BeO
Benchmark Cases 3 - 5

Case 3

Case 4

Case 5
Benchmark Cases 3 - 5

Height of Reflector Rings:
- Top Plug: BeO
 Bottom Plug: BeO
 28.5750 cm

Height of Reflector Rings:
- Top Plug: Al
 Bottom Plug: BeO
 28.8925 cm

Height of Reflector Rings:
- Top Plug: Al
 Bottom Plug: Al
 29.2100 cm
Sensitivity and Uncertainty Analysis

- Evaluated:
 - Measurement
 - Mass
 - Dimension
 - Composition
 - Position
 - Temperature

- One Billion Active Histories
 - Uncertainty of 2 pcm
 - Negligible: $\Delta k_{\text{eff}} < 2$ pcm

\[\delta k_{\text{eff}} = \frac{u_i}{\delta x_i} (\Delta k_{\text{eff}}) \]

- u_i – standard uncertainty
- δx_i – value of the perturbation
- Δk_{eff} – change in k_{eff} across the perturbation
Preliminary Results for Case 3
Selected Mass Uncertainties for Case 3

<table>
<thead>
<tr>
<th>Component</th>
<th>Uncertainty (pcm)</th>
<th>Error (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>4.6</td>
<td>± 0.4</td>
</tr>
<tr>
<td>BeO Inner Rings</td>
<td>2.4</td>
<td>± 0.2</td>
</tr>
<tr>
<td>BeO Outer Rings</td>
<td>0.5</td>
<td>± 0.2</td>
</tr>
</tbody>
</table>
Selected Geometry Uncertainties for Case 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uncertainty (pcm)</th>
<th>Error (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Height</td>
<td>3.3</td>
<td>± 0.1</td>
</tr>
<tr>
<td>Fuel Outer Diameter</td>
<td>2.7</td>
<td>± 0.4</td>
</tr>
<tr>
<td>BeO Inner Ring Height</td>
<td>25.0</td>
<td>± 0.2</td>
</tr>
<tr>
<td>BeO Inner Ring Inner Diameter</td>
<td>-2.4</td>
<td>± 0.2</td>
</tr>
<tr>
<td>BeO Inner Ring Outer Diameter</td>
<td>-6.5</td>
<td>± 0.2</td>
</tr>
<tr>
<td>BeO Outer Ring Height</td>
<td>-6.0</td>
<td>± 0.2</td>
</tr>
<tr>
<td>BeO Outer Ring Inner Diameter</td>
<td>-3.7</td>
<td>± 0.2</td>
</tr>
<tr>
<td>BeO Outer Ring Outer Diameter</td>
<td>-2.2</td>
<td>± 0.2</td>
</tr>
</tbody>
</table>
Selected Material Composition Uncertainties for Case 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uncertainty (pcm)</th>
<th>Error (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235Content in Fuel</td>
<td>4.2</td>
<td>± 1.7</td>
</tr>
<tr>
<td>Carbon Content in Fuel</td>
<td>4.3</td>
<td>± 1.4</td>
</tr>
<tr>
<td>Impurities in Outer Shields</td>
<td>-10.0</td>
<td>± 1.0</td>
</tr>
</tbody>
</table>
Position and Temperature Uncertainties for Case 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Uncertainty (pcm)</th>
<th>Error (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment of Central Core</td>
<td>4.6</td>
<td>± 1.2</td>
</tr>
<tr>
<td>Alignment of Platen</td>
<td>45.6</td>
<td>± 1.2</td>
</tr>
<tr>
<td>Gaps in BeO Reflector Rings</td>
<td>-90.6</td>
<td>± 1.2</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.18</td>
<td>± 0.01</td>
</tr>
</tbody>
</table>
Summary of Largest Uncertainties for Case 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>k_{eff} Combined Standard Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaps in BeO Reflector Rings</td>
<td>0.00091</td>
</tr>
<tr>
<td>Platen Alignment</td>
<td>0.00046</td>
</tr>
<tr>
<td>BeO Inner Ring Height</td>
<td>0.00025</td>
</tr>
<tr>
<td>Outer SS Shield Impurities</td>
<td>0.00010</td>
</tr>
<tr>
<td>BeO Inner Ring Outer Diameter</td>
<td>0.00006</td>
</tr>
<tr>
<td>Total</td>
<td>0.00107</td>
</tr>
</tbody>
</table>
Summary of k_{eff} for Case 3

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Simplification Bias</th>
<th>Experiment Uncertainty</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00016 ± 0.00007</td>
<td>-0.00005 ± 0.00002</td>
<td>± 0.00107</td>
<td>1.00011 ± 0.00107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Calculation</th>
<th>C – E (pcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00020 ± 0.00002</td>
<td>9</td>
</tr>
</tbody>
</table>
Future Work

- Incorporate action items from external reviewers and ICSBEP working group
- Refine/finalize the detailed and simplified models
- Further investigate the BeO gap uncertainty
Acknowledgements

• This work was supported in part by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

• This work was also supported by the NASA Space Technology Mission Directorate.
Delivering science and technology to protect our nation and promote world stability