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Introduction 
 
 
• NC State University student and CNEC Fellow Alex Clark coded 
the sensitivity of the second moment of the neutron multiplicity counting 
distribution into SENSMG. 
 

+ Mattingly worked out a multigroup deterministic method for 
calculating moments of the neutron multiplicity counting 
distribution using forward and adjoint solutions.a 
+ O’Brien et al. worked out sensitivities.b 
+ Clark et al. further developed the sensitivities and applied them 
to improve nuclear cross sections.c 

 
• I used the rod problem for verification. 
 
• In this talk I present the rod problem and two interesting results:  

+ Derivative with respect to χ. 
+ Derivative with respect to the slab width. 

                                     
a J. MATTINGLY, “Computation of Neutron Multiplicity Statistics Using Deterministic Transport,” IEEE Trans. Nucl. Sci., 59, 2, 314–322 (2012); 
https://doi.org/10.1109/TNS.2012.2185060. 
b S. O’BRIEN, J. MATTINGLY, and D. ANISTRATOV, “Sensitivity Analysis of Neutron Multiplicity Counting Statistics Using First-Order Perturbation Theory and 
Application to a Subcritical Plutonium Metal Benchmark,” Nucl. Sci. Eng., 185, 3, 406–425 (2017); http://dx.doi.org/10.1080/00295639.2016.1272988. 
c A. R. CLARK, J. MATTINGLY, and J. A. FAVORITE, “Application of Neutron Multiplicity Counting Experiments to Optimal Cross Section Adjustments,” Nuclear Science 
and Engineering, submitted (2019). 
 
 
 

If you are interested in 
difficulties regarding sensitivities 
w.r.t. χ, see my next talk! 
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An Analytic Transport Problem 
 
 
• Homogeneous slab of width dr .  
• Constant isotropic neutron source rate density q.  
• One neutron energy group.  

+ The induced-fission spectrum in one group is 1, but we will carry it along in the 
equations.  

• Scattering is isotropic.  
• The quantity of interest 1R  is the leakage from the right side of the slab convolved 
with a response function.  
 
• Two directions, right and left, with µ+  the right-going direction cosine and µ−  the left-going.  

+ Directions are constrained to satisfy µ µ+ −= − .  
+ This problem is a regular S2 discrete ordinates calculation. 

 
• The equations for the forward right-going and left-going fluxes are 

1 1
2 2

( ) ( ) ( ( ) ( )) ( ( ) ( )) ,t s f
r r r r r r q

r
ψµ ψ ψ ψ χν ψ ψ+

+ + + − + −
∂

+ Σ − Σ + − Σ + =
∂

 

1 1
2 2

( ) ( ) ( ( ) ( )) ( ( ) ( )) ,t s f
r r r r r r q

r
ψµ ψ ψ ψ χν ψ ψ−

− − + − + −
∂

+ Σ − Σ + − Σ + =
∂

 

with vacuum boundary conditions 
1
2( ) 0drψ+ − =  

1
2( ) 0.drψ− =  

 

, , , ,t s fq χ νΣ Σ Σ

µ+µ−

1
2 dr− 1

2 dr

1 1
1 2 2( )d dR rµ ψ+ += Σ
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The Adjoint Equations 
 
 
• The equations for the adjoint right-going and left-going fluxes are 

*
* * * * *1 1

2 2
( ) ( ) ( ( ) ( )) ( ( ) ( )) 0,t s f
r r r r r r

r
ψµ ψ ψ ψ χν ψ ψ+

+ + + − + −
∂

+ Σ − Σ + − Σ + =
∂

 
*

* * * * *1 1
2 2

( ) ( ) ( ( ) ( )) ( ( ) ( )) 0,t s f
r r r r r r

r
ψµ ψ ψ ψ χν ψ ψ−

− − + − + −
∂

+ Σ − Σ + − Σ + =
∂

 

with a vacuum boundary condition on the left, 
1
2( ) 0,drψ+ − =  

and a source on the right, 
1
2( ) .d drψ− = Σ  

 
• No negative sign in front of the spatial derivative term because these are the computational equations (i.e. the equations that will 
actually be solved) obtained by replacing μ with –μ and recognizing that adjoint particles travel backwards.  
 
• Thus, “left-going” and “right-going” here are in the computational sense, not the mathematical sense, in that right-going 
computational adjoint particles are really going to the right. 

 

, , , ,t s fq χ νΣ Σ Σ

µ+µ−

1
2 dr− 1

2 dr

1 1
1 2 2( )d dR rµ ψ+ += Σ
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Solution of Coupled Partial Differential Equations 
Step 1: Remove the Coupling 
 

1 1
2 2

( ) ( ) ( ( ) ( )) ( ( ) ( ))t s f
r r r r r r q

r
ψµ ψ ψ ψ χν ψ ψ+

+ + + − + −
∂

+ Σ − Σ + − Σ + =
∂

 

1 1
2 2

( ) ( ) ( ( ) ( )) ( ( ) ( ))t s f
r r r r r r q

r
ψµ ψ ψ ψ χν ψ ψ−

− − + − + −
∂

+ Σ − Σ + − Σ + =
∂

 

 
• Take the derivative of the µ+  equation with respect to r 
 

• Write the µ−  equation as ( ) ...r
r

ψ−∂
=

∂
 

 
• Write the µ+  equation as ( ) ...rψ− =  
 
• Combine equations to yield 

( )
2

2 2 2

( ) ( )t t
t s f

r r q
r

ψ χν ψ
µ µ

+
+

+ +

Σ Σ∂
− Σ −Σ − Σ = −

∂
 

 
• Same procedure for ( )rψ− , * ( )rψ+ , and * ( )rψ− . 

( )
2 *

*
2 2

( ) ( ) 0t
t s f

r r
r

ψ χν ψ
µ

+
+

+

Σ∂
− Σ −Σ − Σ =

∂
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Solution of Coupled Partial Differential Equations 
Step 2: Solve Second-Order Ordinary Differential Equations 
 

( )
2

2 2 2

( ) ( )t t
t s f

r r q
r

ψ χν ψ
µ µ

+
+

+ +

Σ Σ∂
− Σ −Σ − Σ = −

∂
 

 
• The right-going forward flux is 

1 2( ) cos( ) sin( ) Pr c r c rψ λ λ ψ+ = + +  

P
t s f

qψ
χν

=
Σ −Σ − Σ

 

1 ( )t t s fλ χν
µ+

= −Σ Σ −Σ − Σ  

 
• The negative sign precedes the first tΣ  because, for this problem, the term in the parentheses is negative.  
 
• The trigonometric solution accounts for the imaginary roots of the characteristic equation. 
 

Particular 
solution 
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Solution of Coupled Partial Differential Equations 
Step 3: Apply Boundary Conditions 
 
 

• Evaluate 1 1
2 2

( ) ( ) ( ( ) ( )) ( ( ) ( ))t s f
r r r r r r q

r
ψµ ψ ψ ψ χν ψ ψ+

+ + + − + −
∂

+ Σ − Σ + − Σ + =
∂

 

with  
1 2( ) cos( ) sin( ) Pr c r c rψ λ λ ψ+ = + +  

at 1
2 dr r=  (the right boundary), using 1

2( ) 0.drψ− =  
 
• The result is 

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1
2 2

1 1
1 2 2

2

sin( ) ( )cos( ) cos( ) ( )sin( )
cos( ) sin( )

( )

d t s f d d t s f d

d d

t s f P

P

r r r r
r r

c q
c

µ λ λ χν λ µ λ λ χν λ
λ λ

χν ψ
ψ

+ +− + Σ − Σ − Σ + Σ − Σ − Σ 
 − 

− Σ − Σ − Σ +  
× =    −   

 

• The solution is 

( )1 1
1 2 2sin( ) cos( )P

t d dc r r
D
ψ λ µ λ λ+= Σ +  

1 1
2 2 2sin( ) ( )cos( )P

d t s f dc r r
D
ψ µ λ λ χν λ+ = − Σ −Σ − Σ   

1 1
2 2cos( ) ( )sin( )d t s f dD r rµ λ λ χν λ+= − − Σ − Σ − Σ  
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Solution 
 
 

1 2( ) cos( ) sin( ) Pr c r c rψ λ λ ψ+ = + +  
1 2( ) cos( ) sin( ) Pr c r c rψ λ λ ψ− = − +  

*
3 4( ) cos( ) sin( )r c r c rψ λ λ+ = +  

*
5 6( ) cos( ) sin( )r c r c rψ λ λ− = +  

 
• The forward and adjoint scalar fluxes are 

( )1
2

1

( ) ( ) ( )
cos( ) P

r r r
c r

φ ψ ψ

λ ψ
+ −= +

= +
 

 
( )
( )

* * *1
2

1
3 5 4 62

( ) ( ) ( )

( )cos( ) ( )sin( )

r r r

c c r c c r

φ ψ ψ

λ λ
+ −= +

= + + +
 

 
• The detector response is 

( )
1 1

1 2 2

1 1 1
1 22 2 2

( )
cos( ) sin( )

d d

d d d P

R r
c r c r

µ ψ

µ λ λ ψ
+ +

+

= Σ

= Σ + +
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The Second Moment 
 
 
• The second moment 2R  of the count rate distribution is 

2 2 2 . . ,s fR S S= +  
where 

( )

( )

2
2*

2
2

2
22 *

2

( 1) ( ) ( )

( 1) ( ) ( )

d

d

d

d

r

f
r

r

f
r

S dr r r

dr r r

ν ν χφ φ

ν ν χ φ φ

−

−

= − Σ

= − Σ

∫

∫
   and   

( )

( )

2
2*

2 . . . .
2 . .

2
22 *

. .
2. .

( 1) ( )

( 1) ( )

d

d

d

d

r

s f s f
r s f

r

s f
rs f

S dr q r

q dr r

ν ν χ φ
ν

ν ν χ φ
ν

−

−

 −
=  

 

 −
=  
 

∫

∫
 

 
• χ is the material induced-fission spectrum and . .s fχ  is the material spontaneous-fission spectrum.  
 
 
 
 
 
 
 
 
• 2R  is the second moment of this distribution  

O’Brien et al., Nucl. Sci. Eng. 185 (2017). 
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The Second Moment (cont.) 
 
• Using PARTISN, a vector χ, and the Nuclear Data Interface (NDI) at LANL, the induced-fission spectrum is defined for mixtures 
(in a one-group problem) as 

,
1

,
1

,

I

i f i i i
i

I

f i i i
i

N f

N f

χνσ
χ

νσ

=

=

=
∑

∑
 

where if  is the spectrum weighting function and I is the number of fissionable isotopes.  
+ If the NDI is not used or if a matrix χ is used, 1if = .  

 
• For the one-group problem, . . 1s fχ = . 
 
• ν  and ( 1)ν ν −  are the first and second factorial moments of the fission multiplicity distributions. These are isotopic nuclear data. 
The products ( 1) fν ν − Σ  and ( )

. .
( 1)

s f
qν ν ν−  are defined for mixtures as  

,
1

( 1) ( 1)
I

f i f ii
i

Nν ν ν ν σ
=

− Σ = −∑  

and 

1. . . .,

( 1) ( 1) .
I

i i
is f s f i

q N qν ν ν ν
ν ν=

   − −
=   

   
∑  

• Only isotopes with data for the moments will contribute to the material quantities ( 1) fν ν − Σ  and ( )
. .

( 1)
s f

qν ν ν− . 
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Feynman Y 
 
 
• The Feynman Y asymptote is  

2

1

.RY
R

=  

 
• A measure of the variance in the neutron multiplicity counting distribution in excess of the variance in a Poisson distribution. 
 
 
 
 
 

• The width of the distribution in excess of 
the Poisson distribution is characteristic of 
multiplying material. 

O’Brien et al., Nucl. Sci. Eng. 185 (2017). 
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Flux Functionals 
 
 
• The volume integral of the square of the adjoint scalar flux is 

( ) ( ) ( )
2

2* 2 2
3 5 4 6

2

1( ) ( ) sin( ) ( ) sin( )
8

d

d

r

d d d d
r

dr r c c r r c c r rφ λ λ λ λ
λ−

 = + + + + − ∫  

 
 
• The volume integral of the square of the adjoint scalar flux multiplied by the forward scalar flux is 

( ) ( )

( )

2
2* 2 2 31 31 1 1

3 5 4 64 2 2 2
2

2
2*

2

( ) ( ) ( ) 9sin( ) sin( ) ( ) sin ( )
6

( )

d

d

d

d

r

d d d
r

r

P
r

cdr r r c c r r c c r

dr r

φ φ λ λ λ
λ

ψ φ

−

−

 = + + + + 

+

∫

∫
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Derivatives with Respect to an Arbitrary Input Parameter (Material Property) 
 
 

• 
( )t s fP P P

x x t s f x

q
q

χνψ ψ ψ
α α χν α

∂ Σ −Σ − Σ∂ ∂
= −

∂ ∂ Σ −Σ − Σ ∂
 

 

• 
( )1 1

2 ( )
t s ft

x t x t s f x

χνλ λ
α α χν α

 ∂ Σ −Σ − Σ∂Σ∂
= +  ∂ Σ ∂ Σ −Σ − Σ ∂ 

, 2

1 1

x x

λ
α λ λ α
∂ ∂  = − ∂ ∂ 

 

 

• 1 1 1 1
1 2 2 2

(12)

1 1 sin( ) cos( ) sin( )
2 2

t t d dP P P
d d d

x P x x x x

r rc D c r r r
D D D

µ λψ ψ ψ λλ µ λ λ
α ψ α α α α

+
+

   ∂Σ Σ∂ ∂ ∂ ∂ = − + + + −    ∂ ∂ ∂ ∂ ∂   
 

 
• etc.  
 

• ( )1 1 21 1 1 1 1
2 12 2 2 2 2cos( ) sin( ) cos( ) sin( )

2
dP

d d d d d
x x x x x

rR c cr r c r c rψ λµ λ λ λ λ
α α α α α+

 ∂ ∂ ∂ ∂ ∂
= Σ + + + − ∂ ∂ ∂ ∂ ∂ 

 

 

• 2 . .2 1

1

1 s f

x x x x

SY S RY
Rα α α α

∂ ∂ ∂ ∂
= + − ∂ ∂ ∂ ∂ 
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Derivatives with Respect to the Slab Width 
 
 

• 0P

dr
ψ∂

=
∂

, 0
dr
λ∂
=

∂
 

 

• ( )1 1 1 1
2 2cos( ) sin( )

2
P

t d d
d d

c c D r r
r D r D

ψ λ λ µ λ λ+
∂ ∂

= − + Σ −
∂ ∂

 

 
• etc. 
 

• ( )1 1 21 1 1 1 1
2 12 2 2 2 2cos( ) sin( ) cos( ) sin( )

2d d d d d
d d d

R c cr r c r c r
r r r

λµ λ λ λ λ+

 ∂ ∂ ∂
= Σ + + − ∂ ∂ ∂ 

 

 

• 2 . .2 1

1

1 s f

d d d d

SY S RY
r R r r r

∂ ∂ ∂ ∂
= + − ∂ ∂ ∂ ∂ 
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Test Problem 
 
 
• Material is plutonium 
with density 14 g/cm3  
 
 
 
• Slab width = 4 cm 
 
• Neutron source rates: 

+ Total neutron source rate density is   
q = 585.3096779 neutrons/cm3∙s 

 
• 618-group MENDF71X collapsed to 1 energy group 
 
• PARTISN (discrete-ordinates) parameters: 0.0005-cm mesh; P0 scattering expansion   
 
• First and second factorial moments of the multiplicity: 
 
• Regular S2 ordinates 1 3µ± = ±  
 
• Response function dΣ  = 0.009875877948 
 

 

Nuclide Density 
[atoms/(b∙cm)] 

Weight 
Fraction 

Pu-239 0.03385770516 0.96 
Pu-240 0.001404851530 0.04 

   
 

 

Nuclide Neutrons/s/(1024 atoms) 
Pu-239 5.90346862E+00 
Pu-240 4.16492268E+05 

  
 

 

Event ν  1( )ν ν −  
Thermal fission of 239Pu 2.8794 6.7728 
Spontaneous fission of 240Pu 2.1563 3.8242 

   

J. W. Boldeman and M. G. Hines, “Prompt Neutron Emission Probabilities 
Following Spontaneous and Thermal Neutron Fission,” Nucl. Sci. Eng., 91, 
114–116 (1985). 
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Responses 
 
 
 
 
 
 
 
 
 

 

Response Analytic  SENSMG Difference 
R1 1.57256464E+02 1.572564E+02 –0.00001% 
R2 7.54409818E+02 7.544096E+02 –0.00003% 
Y 4.79732153E+00 4.797320E+00 –0.00002% 
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Sensitivity with Respect to the Pu-240 Induced-Fission Spectrum 
 

• PARTISN constructs the material induced-fission spectrum χ using Pu239 ,Pu 239 Pu239 Pu239 Pu240 ,Pu 240 Pu240 Pu240

,Pu 239 Pu239 Pu239 ,Pu 240 Pu240 Pu240

.f f

f f

N f N f
N f N f

χ νσ χ νσ
χ

νσ νσ
+

=
+

 

 

• The unnormalized derivative of χ with respect to the Pu-240 fission spectrum is ,Pu 240 Pu240 Pu240

Pu 240 ,Pu 239 Pu239 Pu239 ,Pu 240 Pu240 Pu240

.f

f f

N f
N f N f
νσχ

χ νσ νσ
∂

=
∂ +

 

 

• ( )
2

22 . . 2 *
. .

Pu240 Pu240 2. .

( 1) ( )
d

d

r
s f

s f
rs f

S
q dr rν ν χ φ

χ ν χ −

∂  − ∂
=  ∂ ∂ 

∫  

 

• ( ) ( )
2 2

2 2* 2 *2

Pu240 Pu240 Pu2402 2

( 1) 2 ( ) ( ) ( ) ( )
d d

d d

r r

f
r r

S dr r r dr r rχν ν χ φ φ χ φ φ
χ χ χ− −

 ∂ ∂ ∂
= − Σ +  ∂ ∂ ∂ 

∫ ∫  

 

 

Sensitivity(a) Analytic  SENSMG Difference 
1 Pu 240,RS χ  1.879239E-01 1.879239E-01 0.00000% 

2 Pu 240,RS χ  5.736636E-01 5.736636E-01 –0.00001% 

Pu 240,YS χ  3.857397E-01 3.857397E-01 –0.00001% 
    

(a) Unconstrained. 
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Derivative with Respect to the Slab Width  
 
 
• An equation for the adjoint-based derivative of the Feynman Y to interface locations and the outer boundary has yet to be derived 
formally.  
 
• SENSMG uses a straightforward extension of the equation for the derivative of the mean count rate R1,d,e  

( ){ }* *1
4

1

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ,Ω Ω Ω Ω
n

G
g g g

n n nS
gn

R dS d r Q r F A r
r π

ψ ψ ψ
=

∂
= ∆ + ∆ −∆

∂ ∑∫ ∫  

where the Δ terms are differences across surface Sn. 
 
 

                                     
d K. C. BLEDSOE, J. A. FAVORITE, and T. ALDEMIR, “Using the Levenberg-Marquardt Method for Solutions of Inverse Transport Problems in One- and Two-Dimensional 
Geometries,” Nuclear Technology, 176, 1, 106–126 (2011); https://doi.org/10.13182/NT176-106. 
e J. A. FAVORITE and E. GONZALEZ, “Revisiting Boundary Perturbation Theory for Inhomogeneous Transport Problems,” Nucl. Sci. Eng., 185, 3, 445–459 (2017); 
https://doi.org/10.1080/00295639.2016.1277108. 
 
 
 

 

Sensitivity Analytic  SENSMG Difference 
1 dR r∂ ∂  7.688378E+02 7.688377E+02 –0.00002% 
2 dR r∂ ∂  1.091584E+04 1.091583E+04 –0.00008% 

dY r∂ ∂  4.595981E+01 4.595979E+01 –0.00004% 
    

 



 Operated by Triad National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D Slide 19 of 19 

Summary and Conclusions 
 
 
• The S2 slab or “rod” problem has been applied to verify the adjoint-based derivatives of R1 and R2, the first and second moments of 
the neutron multiplicity counting distribution  
 
• Keep this analytic problem in mind! 
 
• Ganapol has published the solution of the rod problem in 
arbitrary groups (G > 1).f  
 

+ I wanted to use Ganapol’s solution, but I couldn’t 
figure out how to take analytic derivatives. 
 
+ An exercise for a student…. 

 
 
• The rod problem helped us figure out what to do about adjoint-based derivatives with respect to χ. 
 
• The rod problem verified our derivatives with respect to outer boundary. 

                                     
f B. D. GANAPOL, “An Analytical Multigroup Benchmark for (n,γ) and (n,n′,γ) Verification of Diffusion Theory Algorithms,” Ann. Nucl. Eng., 38, 2017–2023 (2011); 
https://doi.org/10.1016/j.anucene.2011.04.013. 
 
 
 


