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INTRODUCTION 3

% Most nuclear facilities are designed to have conservative subcritical margin to prevent accidentally
uncontrolled neutron multiplications.

% Therefore, an accurate real-time measurement of subcriticality can provide a helpful way to
guarantee the safe operation of nuclear facilities.

% Noise analysis methods have been studied for a long time for this purpose.

“ In this work, subcriticality experiment is performed with the Feynman-a method at AGN-201K which
is zero-power research and training reactor in our country.

% To reduce computing time and for improve accuracy near five critical states in estimating the
prompt neutron decay constant, a fully random sampling technique coupled with the second order
differential filtering is devised to effectively process the data obtained with a fine gate time within

reduced computing time.

3% KYUNG HEE

UNIVERSITY




THEORY AND METHOD 4

“* Noise analsysis method

= Noise analsysis method are based on the same basic premise that the properites of a
subcritical system can be determined by measuring the fluctuations in the fission chain
processes that depend on the stochastic nature of the birth and death of neutrons.

= So, if the time of the source or detection event are measurable, the distribution event of the

times between the source (or detection) event and detection event would proved a direct

indication of the dynamic properties of the subcritical system.
Time
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THEORY AND METHOD 5

< Feynman-a method

= The Feynman-a method can be derived from the Rossi-a method. This method can determine

the prompt neutron decay constant (a) by considering the ratio of the variance to the mean of

neutron counts collected in a fixed time interval (i.e., gate time).

Time
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Fig. 1 Random branching process of fission neutron
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THEORY AND METHOD

< Feynman-a method
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THEORY AND METHOD

< 279 order Feynman-a differential filtering method

differences of the counts between adjacent gates.

However, the conventional Feynman-a method suffers from the divergence of the variance near the critical state.

To circumvent the divergence of the variance, Bennett (1960) proposed an improved method with

= Hashimoto et al. (1997) generalized the Bennett’s method to develop a difference-filtering technique and

proposed a usage of the higher-order filtering for Feynman-a method to reduce the effect of reactor-power

drift during a measurement.
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THEORY AND METHOD 8

“* Subcriticality Measurement System (SMS)

= In this study, a time-series data of neutron counts within a fine unit gate time of 10 psec is
acquired using the SMS which was developed by Korea Electric Power Research Institute
(KEPRI) for measureing the ex-core detector signal from commercial PWR to get the condition
of large subcriticality.

= Since the neutron generation time (A) is estimated about 50~60 pnsec, the shorter gate time can

acquire more detailed information for estimating a value.
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Fig. 4 Subcriticality Measurement System (SMS) and time series data of neutron counts for 0.1 sec




THEORY AND METHOD 9

“+ Data Processing with a Fully Random Sampling

= In general, the Feynman-a method requires sufficient number of measurement data for the reliable

accuracy of curve fitting.

= A method called “Bunching-technique (time-swap)” increases the number of data by using shifted data
even for long gate times.

= However, those method have some disadvantages that the number of the processing data is too big with a

fine gate time, which drastically increases computing time.
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THEORY AND METHOD 10

“+ Data Processing with a Fully Random Sampling
= In this work, a simple efficient fully random sampling technique is suggested to overcome

these drawbacks.
= In this method, for a given gate time, a given number of starting time points are randomly

sampled over the whole data range and then the consecutive count data within the gate time

for each sampled starting time bin : C;.
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11

“+ Data Processing with a Fully Random Sampling

= The only inputs to be specified are the length of gate times (or number of gate times) and the

number of the random samplings for each time bin.

= As the number of sampling data increases, the measured Y or 4, approaches a single value and

dispersion decreases.
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AGN-201K AND SUBCRITICAL STATES 12
< AGN-201K

= AGN-201K is a zero-power research and training Thermal column

reactor built by Aerojet General Nucleonics (AGN).
= |t is solid moderated reactor using polyethylene and
licensed maximum power is 10 Watt.

= The fuel is a homogeneous mixture of UO2 and

polyethylene.

= The fuel is comprised of 10 disks with 12.8 cm radius

and 25 cm active core height.

= Uranium enrichment of the fuel is about 19.5 w/o.

= The active core is surrounded by 25 cm thick

graphite reflector followed by a 10 cm thick lead

gamma shield. 7
LS Ll Sha Fig. 8 Axial configuration of the AGN-201K
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AGN-201K AND SUBCRITICAL STATES 13
 AGN-201K

= For fast neutron shielding, the outside of the core
tank is filled with water of ~47.5 cm thickness.
The control rod consists of 2 Safety Rods (SR), 1
Coarse Rod (CR), and 1 Fine Rod (FR) that have

the same composition as the fuel material. =

During operation reactor power is controlled by -o=3== e |
CR and FR. ™

In particular, an external Ra-Be source located in

the left upper beam port supplies neutrons with
an intensity of 10 mCi.
= A He-3 ex-core detector conneted with SMS is

located in right-lower beam port
KYUNG HEE Fig. 10 Radial configuration of the AGN-201K
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AGN-201K AND SUBCRITICAL STATES 14

s+ Selected Subcritical States

= Before the subcriticality measurement, five Sub-Critical condition (SCR) are determined.

= By using the MCNP6 eigenvalue calculations, we obtain the reference k. values and kinetic
parameters.

= The MCNP6 eigenvalue calculations are performed with ENDF/B-VII.1 cross sections, and with
100 inactive and 5 000 active cycles of 100 000 histories to minimize the statistical error of ke

and kinetic parameters.

TABLE I. Reference multiplication factors and kinetic parameters estimated with MCNP6

Condition  k Inserted rod position (cm)
eff SR#1 SR#2 CR FR
SCR1 0.98764 0.00755 [55.89873| 23.07 23.44 0 12.56
SCR2 0.99668 3 0.00761 [54.55938| 23.07 23.44 17.25 12.56
SCR3 0.99737 3 0.00746 [54.27638 23.07 23.44 18.25 12.56
SCR4 0.99811 3 0.00757 [53.91283 23.07 23.44 19.25 12.56
~SCR5 0.99885 3

UNIVERSITY
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“» Experiment Condition

= A series of neutron count was obtained for 5 subcritical conditions by using SMS with a unit
gate time of 10 psec during 4 minutes to 5 miniutes.
= The number of time bins considered was 25 million counts (i.e., 25 000 000 7, T = 10 psec).

= For curve fitting, the length of gate time was considered up to 0.1 sec (i.e., 10 000 7).
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RESULTS AND DISCUSSION 16

< Feynman-a method

= Fig. 12 shows the reference k¢ and a value (a-PKE) and difference between reference value

and estimated value.
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RESULTS AND DISCUSSION 17

< Feynman-a method

= Feynman-a method with time swap gives accurate k.s results less than 340 pcm, but long

computing times.
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RESULTS AND DISCUSSION 18

“* Feynman-a method

= The largest subcritical state
SCR1 shows the Ilowest
slope of the fitting curve.

= As shown in Fig. 13, as the

number of sampling increases,

the measured Y value
converges toward a specific

value.
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RESULTS AND DISCUSSION

“ Feynman-a method with time-swap and fully random sampling methods

= |t is noted that fully random sampling method even with a much smaller number of gate times gives

comparable accuracies and its computing times are much shorter than those of time-swap method.

TABLE Il. Results of Feynman-a method using the time-swap and fully random sampling techniques

Technique Time-swap Fully random sampling

# of gate times 100 100 100 100,000 100,000

# of samplings whole data 10,000 100,000 10,000 100,000
Condition| k., |a-PKE| k-est a-est k-est a-est k-est a-est k-est a-est k-est a-est
0.99103 | 296.99 | 0.98985 [ 318.45 | 0.99115 | 294.83 | 0.99102 | 297.19 | 0.99103 | 297.00
SCR1 10.98764/358.95 2.338.98|261.96 | -221.31 | 40.50 | -350.84 | 64.12 | -337.86 | 61.76 | -338.95 | 61.95
0.99976 | 143.92 | 0.99985 | 142.27 | 0.99973 | 144.35|0.99976 | 143.80 | 0.99975 | 143.98
SCR2 10.99668200.53 -307.80 | 56.61 | -316.80 | 58.26 | -305.46 | 56.18 | -308.45 | 56.73 | -307.45 | 56.55
0.99737|186.03 0.99940 | 148.51 | 0.99961 | 144.61 | 0.99939 | 148.69 | 0.99940 | 148.51 | 0.99939 | 148.64
-202.96 | 37.52 | -224.12 | 41.42 | -201.99 | 37.34 | -202.95 | 37.52 | -202.29 | 37.39
099811 |175.53 1.00120 | 118.13 | 1.00119 | 118.36 | 1.00123 | 117.62 | 1.00121 | 118.01 | 1.00120 | 118.23
-309.26 | 57.40 | -308.01 | 57.17 | -312.03 | 57.91 | -309.91 | 57.52 | -308.74 | 57.30
0.99885| 162.6 1.00092 [124.19(1.00109 | 121.10 | 1.00091 | 124.36 | 1.00092 | 124.25| 1.00092 | 124.19
' | -207.39 | 38.41 | -224.10 | 41.50 | -206.49 | 38.24 | -207.06 | 38.35 | -207.41 | 38.41

Average CPU time (sec) 108479 703 1142 5737 45353
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< 279 order Feynman-a differential filtering method

21

= 2nd Feynman-a method with time swap gives accurate k. results less than 480 pcm, but long

computing times.
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< 279 order Feynman-a differential filtering method

22

= 2 Feynman-a method shows more accurate measurement near critical states than

conventional Feynman-a method.

61 Method 2"d order F-a Feynman-a
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RESULTS AND DISCUSSION

< 2"d Feynman-a method

The shape of the graph
looks similar compared with
the Feynman-a method, but
slight difference at the front.
As shown in Fig. 15, the number
of sampling increases, the
measured o, value converges
toward a specific value.

The a be

estimated more elaborately

value can

if we increase the number of

gate times.
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Fig. 15 2nd order Feynman-a fitting for five subcritical states using fully random sampling tehcnique
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< 279 order Feynman-a differential filtering method

24

= [t is noted that fully random sampling method even with a much smaller number of gate times gives

comparable accuracies and its computing times are much shorter than those of time-swap method.

TABLE IlIl. k. estimated with 2d order Feynman-a differential filtering method using the time-swap and fully random sampling techniques

Technique Time-swap Fully random sampling
# of gate times 100 100 100 100,000 100,000
# of samplings whole data 10,000 100,000 10,000 100,000
Condition| k. |a-PKE| k-est a-est k-est a-est k-est a-est k-est a-est k-est a-est
0.99247 |270.73 10.99271 [ 266.40 [ 0.99249 | 270.36 | 0.99247 | 270.77 | 0.99249 | 270.45
SCR1 0.98764)358.95 a-483.34 |288.22 | -507.22 | 92.55 | -485.39 | 88.59 | -483.16 | 88.18 | -484.89 | 88.50
0.99897 | 158.29 | 0.99897 [ 158.33 [ 0.99896 | 158.50 [ 0.99897 | 158.32 | 0.99898 | 158.22
SCR2 10.99668)200.53 -229.46 | 42.24 | -229.26 | 42.20 | -228.36 | 42.03 | -229.35 | 42.21 | -229.85 | 42.31
0.997371186.03 0.99914 | 153.31[0.99906 | 154.78 [ 0.99913 [ 153.45 [ 0.99915 | 153.14 | 0.99914 | 153.27
-176.95 | 32.72 | -169.00 | 31.25 | -176.22 | 32.58 | -177.88 | 32.89 | -177.16 | 32.76
0.998111175.53 1.00059 [ 129.50 [ 1.00057 [ 129.81 [ 1.00060 | 129.23 | 1.00060 | 129.36 | 1.00058 | 129.63
-247.84 | 46.03 | -246.19 | 45.72 | -249.35 | 46.30 | -248.62 | 46.17 | -247.16 | 45.90
0.99885| 162.6 1.00029 [ 136.00 | 1.00031 [ 135.54 [ 1.00030 | 135.67 | 1.00029 | 135.95]1.00028 | 136.03
-143.56 | 26.60 | -146.01 | 27.06 | -145.30 | 26.93 | -143.81 | 26.65 | -143.38 | 26.57
Average CPU time (sec) 292271 719 1401 7224

¥ 2 [(kex) — (k-est)] (pcm Ak), ® [(a-PKE) — (a-est)] (1/s)




RESULTS AND DISCUSSION 25

< 279 order Feynman-a differential filtering method

= |t is noted that the 2nd order Feynman-a method shows a more accurate value than the

conventional Feynman-a method near critical states (SCR2~SCR5).

TABLE Ill. k. estimated with 2" order Feynman-a differential filtering method using the time-swap and fully random sampling techniques

Method 2"d order Feynman-a Conventional Feynman-a

Technique Time-swap Fully random sampling Time-swap Fully random sampling
# of gate times 100 100 100 100,000 | 100,000 100 100 100 |100,000{ 100,000
# of samplings whole data | 10,000 | 100,000 [ 10,000 | 100,000 | whole data | 10,000 [100,000| 10,000 | 100,000
Condition keg | 0-PKE k-est k-est k-est k-est k-est k-est k-est k-est k-est k-est
scR1 |0.98764!358.95 0.99247 |[0.99271]0.99249]0.99247 10.99249 | 0.99103 [0.98985|0.99115]0.99102( 0.99103
SCR2 |0.99668!200 53 0.99897 [0.99897|0.99896 | 0.99897 | 0.99898 [ 0.99976 [0.99985]|0.99973[0.99976| 0.99975
-229.46 | -229.26 | -228.36 | -229.35 [ -229.85 | -307.80 |-316.80]-305.46(-308.45| -307.45
0.99737|186.03 0.99914 [0.99906 | 0.99913]0.99915]0.99914 [ 0.99940 [0.99961/0.99939]0.99940( 0.99939
' ' -176.95 | -169.00 | -176.22 | -177.88 [ -177.16 | -202.96 |-224.12]-201.99 [-202.95| -202.29
0.998111175.53 1.00059 [1.00057 | 1.00060 | 1.00060 | 1.00058 | 1.00120 [1.00119(1.00123]1.00121(1.00120
-247.84 -246.19 [ -249.35 | -248.62 | -247.16 | -309.26 |-308.01(-312.03]-309.91| -308.74
0.99885| 162.6 1.00029 [1.00031 [ 1.00030 | 1.00029]1.00028 | 1.00092 [1.00109(1.00091]1.00092( 1.00092
-143.56 | -146.01 | -145.30 | -143.81 | -143.38 [ -207.39 ([-224.10]-206.49 [ -207.06 | -207.41
Average CPU time (sec) 292271 719 1401 7224 61796 108479 703 1142 5737 | 45353
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CONCLUSION 26

% In this work, subcriticality experiment is performed with the Feynman-a and 274 Feynman-a
differential method at AGN-201K.

< A fully random sampling technique is devised to overcome the drawbacks that bunching-technique
with fine unit gate time drastically increases computing time,.

% For measuring subcriticality, eigenvalue calculations are performed with MCNP6 to obtain
reference k. and kinetic parameters.

“ In conclusion, it was shown that the new fully random sampling technique suggested in this work
can provide accurate subcriticality estimations with computationally efficient way for AGN-201K
and this method coupled with the second-order differential method gives slightly better estimation

for the near-critical cases.
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