CNS consolidated nuclear security, Ilc PANTEX PLANT Y-12 NATIONAL SECURITY COMPLEX

NCS design and evaluation of new high-density storage containers

Amber McCarthy amber.mccarthy@cns.doe.gov Nuclear Criticality Safety Engineer

Presentation Summary

Overview of new container study

- Motivation for study
- Background Existing RCSB Containers
- Changes in Mission
- NCS Evaluation of an Equivalent System
- Results
 - Varying Interstitial Water Density
 - Dehydrated BoroBond4[™]
- Conclusions and Future Work

Motivation for Study

Highly Enriched Uranium Materials Facility (HEUMF)

- Y-12 national repository for secure, efficient storage of highly enriched uranium
- Storage design racks configured for both drums and Rackable Can Storage Boxes (RCSBs)
- Construction 2008, operational in 2010

Background – Existing RCSB Containers

- 3' x 4' x 1' block assembly on a 6" tall skid assembly
- Block has 567kg of solid ceramic material with 6 cavity positions, and 90 kg stainless steel body with 17 kg lid
- Skid is made of 72 kg stainless steel
- Positions are designed to receive one metal can each with up to 20kg loading
- Cans *may* have variable dimensions and must be loaded with material forms that are stable and suitable for long term storage

Background – Existing RCSB Containers

Changes in Mission

Storage utilization

- Increased receipt of off-site shipments facility designed for Y-12 materials
- Canisters from off-site shipments (< Ø 12.75 cm) typically received in ES-3100
- RCSB designed to receive large canisters (< Ø 15.70 cm)
 - Uranium metal or uranium oxide loadings up to 20kg
- Limited ability to consolidate material
- RCSB not used to full capacity

Proposal: design a neutronically and mechanically equivalent high density storage container capable of receiving lower masses in the same container footprint used by existing RCSBs

NCS Evaluation of an Equivalent System

Goal of study: provide proof of concept for test procurement

- SCALE 6.1.3 software perform KENO V.a Monte Carlo calculations
- Large array cases
- Worst case maximum 20kg loadings in RCSB compared to new maximum 10kg loading in new 12-Place design

NCS Evaluation of an Equivalent System

Studies use both sphere and shell models

- RCSB 3x2 cavity arrangement
- 12-Place RCSB 4x3 cavity arrangement
- BoroBond4[™] (teal) fissile region (magenta).

Results – Varying Interstitial Water Density

Anticipated behavior: - All cases in 12-place RCSB produce lower keff - Reactivity increases at higher water densities

Shell Loadings

Results – Dehydrated BoroBond4[™]

Fire scenario subject to extreme heat

- BoroBond4[™] consists of ordinary Class F Fly-Ash and B₄C powder distributed throughout the solid crystalline matrix of MgKPO4·6H20.
- Dehydrated BoroBond4[™] assumes no hydrogen and half the number of oxygen atoms are present
- Depths of 2.54 cm, 5.08 cm, and full dehydration
- Previous computational thermal analysis support potential for 5.08 cm of dehydration under design basis fire scenario (two powered industrial trucks collide in storage bay)

Results – Dehydrated BoroBond4[™]

Sphere Loadings

- Anticipated behavior: 12-place RCSB produce lower $k_{\rm eff}$, interaction effects obvious at low water densities, converge at full density water
- Only cases exceeding USL (0.96) are full dehydration

Shell Loadings

- Interaction effects dominate immediately due to increased surface area (shell) and limited BoroBond4[™], RCSB lower k_{eff}
- Little difference between container types

Conclusions and Future Work

12-Place RCSB conclusions

- Lower or similar k-eff values produced in most cases safer or similar level of safety as existing boxes
- Less mass within individual cavities -> increases fissile material surface area in close proximity of poison, aids in absorption ability
- Although cavities are closer together, increased neutron interaction effects are not observable until substantial dehydration occurs

Future Work

- Over mass loadings largest credible over mass
- Homogenous U-water mixture loadings
- Results of packaging thermal and drop tests (DOE 420.1c) will inform CSE and additional calculations

12

Questions?

Copyright Notice

This document has been authored by Consolidated Nuclear Security, LLC, a contractor of the U.S. Government under contract DE-NA0001942, or a subcontractor thereof. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes.

DISCLAIMER

This work of authorship and those incorporated herein were prepared by Consolidated Nuclear Security, LLC (CNS) as accounts of work sponsored by an agency of the United States Government under Contract DE-NA-0001942. Neither the United States Government nor any agency thereof, nor CNS, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility to any non-governmental recipient hereof for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or contractor thereof, or by CNS. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or contractor (other than the authors) thereof.