Acceptable Evaluation of Nuclear Criticality Safety

Introduction

One of the more difficult tasks of a criticality safety engineer (CSE) is to develop the rationale for the establishment of controlled parameters and the proper documentation of the basis for nuclear criticality safety limits derived for the controlled parameters. In addition, clear specifications of associated control and functionality requirements to safely operate a process or facility that contains fissile material must be clearly communicated to operating personnel.

Background

This white paper was identified by the ANS/NCSD Education Committee as important to meeting the overall mission statement of the NCSD, "To promote development of nuclear criticality safety expertise by providing opportunities that offer technical growth and recognition." An obvious area in which to promote development of nuclear criticality safety expertise is to define what constitutes acceptable documentation for an evaluation of nuclear criticality safety, and the underlying logic used in the creation of this documentation.

General Discussion

The guidance provided in ANSI/ANS-8.19-1996, "Administrative Practices for Nuclear Criticality Safety," Section 8, states that, "Before the start of a new operation with fissile material, or before an existing operation is changed, it shall be determined and documented that the entire process will be subcritical under both normal and credible abnormal conditions." In addition, the evaluation of nuclear criticality safety "shall be documented with sufficient detail, clarity, and lack of ambiguity to allow independent judgment of results." To accomplish this, CSEs must be knowledgeable of operations that govern fissile processes and must be able to anticipate conditions that could develop to allow a criticality accident. In addition, the CSEs must have a firm grasp of the analytic tools and their limitations, license conditions, and standards and regulations. Finally, ANSI/ANS-8.19 requires that each documented evaluation of nuclear criticality safety shall be independently reviewed by another qualified CSE, who was not directly involved in the preparation of the evaluation of nuclear criticality safety.

Determination of Normal and Credible Abnormal Conditions

A key section of any criticality safety evaluation is the analysis of normal operations and upset (contingency) events that could lead to the possibility of a criticality accident and documentation of why the prescribed controls are adequate. The basic expectation for the analysis in ANSI/ANS-8.1 is that operations with fissile material "will be subcritical under both normal and credible abnormal conditions." The assessment of these conditions should assure that the failure of a single barrier or single "change in process condition" will not result in a criticality accident. In addition, failure of each of the

multiple barriers should be unlikely and not involve a common mode failure. A barrier may consist of multiple controls.

The CSE must describe the suite of credible accident scenarios and how the scenarios were determined. There is normally a range of contingencies that needs to be considered and input from subject matter experts from multiple disciplines, including process specialists, operators, safety basis analysts, and other safety disciplines, is required for a comprehensive collection.

For most criticality safety specialists, formal methods of assessing the contingencies are helpful. Some specialists gain insight with "logic trees". Examples are "event trees" which assume the accident happens and develop sequences of steps that are required to prevent it, and "fault trees" which assume a contingent event occurs and follow the consequences. For operations that are largely dependent on hardware, many criticality specialists are aided by the Hazards and Operability (HAZOP) or Failure Modes and Effects (FMEA) methods. Some elements of probabilistic risk assessment techniques can allow more precision in evaluation of scenarios or choice of controls. Although less rigorous, the "What If" method can be helpful and is widely used. Whatever method is used, the method and rationale need to be documented so that the results and conclusions of this part of the evaluation can be intelligently reviewed by operators, process specialists, and other criticality safety specialists.

The overall goal for each nuclear operation assessed is that the risk of a criticality accident is as low as reasonably achievable. Implicit in the guidance of the ANSI/ANS criticality safety standards is the concept of efficiency in addition to safety using a graded approach. In Section 1, ANSI/ANS-8.1 states that "...extensive operations can be performed safely and economically when proper precautions are exercised", and the admonition that "good safety practices must recognize economic consideration..." stresses that the controls should be as cost effective as is reasonable. It also reminds the reader that protection of operating personnel and the public must be the dominant consideration.

Reviews

Technical reviews of criticality safety evaluations should be performed by a qualified criticality safety engineer who is familiar with the operation, process or facility being evaluated.

Format and Content

Facility-specific administrative requirements ultimately dictate the format and content of an evaluation of nuclear criticality safety; however, the following elements are needed to meet the minimum acceptable requirements.

The evaluation of nuclear criticality safety documents the safety basis for the identification of controlled parameters for each process or operation, and the establishment of the implemented controls on those parameters to maintain the process or operations within applicable subcritical limits. The evaluation of nuclear criticality safety identifies and addresses the credible concerns (e.g., event sequences,

contingent conditions) of importance to nuclear criticality safety for the defined system. The evaluation of criticality safety is prepared or updated for each new or significantly modified unit or process system at the facility, in accordance with established internal configuration management procedures by qualified criticality safety staff. It is further recommended that the limits and controls established in the evaluation be accepted by operations line management prior to initial implementation or revision thereof. This may be integral to the review and implementation process of the evaluation itself or via a separate nuclear safety requirements document.

The scope and content of a particular evaluation of criticality safety should reflect the needs and characteristics of the system being analyzed and include the applicable elements as follows:

- Scope This element defines the stated purpose of the evaluation and the properties (e.g., maximum enrichment and isotopes) of the fissile material being processed.
- General Discussion This element presents an overview of the process being evaluated (new operation, proposed change or installation) and includes a process description, flow diagrams, normal operating conditions, system interfaces, and other aspects important to design considerations.
- Assumptions/Controls This element identifies and describes the assumptions used in the evaluation (e.g., worst credible conditions of material composition, density, enrichment, internal/external moderation, structures) as well as the controls (e.g., items relied on for safety) needed for nuclear criticality safety of the process. This also includes a statement that summarizes the interface considerations with other units or process areas. It is especially important to identify assumptions which could be subject to change.
- Model Descriptions This element identifies and describes all models used in the
 evaluation, including those for both normal and credible upset conditions. The
 model file naming convention (if used) should be provided along with key input
 listings and corresponding geometry plots for both normal and credible upset
 conditions.
- Calculation Results This element identifies and describes how the calculations were performed, what analytic methods or reference documents were used, and presents a tabular listing of the calculation results with associated uncertainty (e.g., k_{eff} + 2σ) as a function of the key parameters (e.g., wt. % H₂O). The assigned bias of the calculation should be clearly stated, made traceable to a documented validation report, and incorporated into both normal and credible upset limit comparisons. This element may also directly reference hand calculations and/or published handbook results.
- Safety During Upset Conditions This element presents a concise summary of the upset conditions considered credible for the defined operation or process system. This element includes a discussion as to how the established limits are adequate to maintain criticality safety for each credible process upset (e.g.,

accident sequence), and should clearly demonstrate how the double contingency principle is met, or if not, how multiple levels of controls are used to assure subcriticality.

The basic steps to be documented in this section of the evaluation are:

- Know the operation and system being evaluated. If the operation and equipment is preexisting, direct observation is highly recommended. Facility and equipment drawings should be reviewed as well as process flow sheets or descriptions. If available, the safety analysis for the facility will provide information on upset and failure modes which should be considered (e. g. sprinkler activation, glove-box rupture, or rack collapse.)
- 2. Identify potential criticality accident scenarios. Use of a formal method is recommended. One of the most common formal methods is to use the system parameters as the outline for a "what if" analysis. Input from operations personnel and process specialists is essential. The failure mode of each potential barrier to an accident and the remaining margin of subcriticality should be understood and documented. Several walkthroughs of the process may be necessary during the identification of accident scenarios.
- 3. Control the risk. The risk of any credible criticality scenarios must be controlled. The preferred hierarchy of controls is 1) passive engineered controls, 2) active engineered controls, and 3) administrative controls. Each contingency scenario requiring prevention shall have multiple independent and robust barriers. All credited controls and all assumptions on conditions that could be changed need to be clearly described.

.

- Specifications and Requirements for Safety This element presents both the
 design specifications and the nuclear criticality safety requirements for correct
 operational implementation of the established controls. All assumptions subject to
 change by others should be clearly stated. These requirements are incorporated
 into operating, training, maintenance, and quality assurance procedure
 requirements. Operational concurrence by both process engineering and
 operations management is required to implement the requirements. Any new
 criticality safety analysis must integrate well with the existing safety analysis for the
 entire facility. Care must be taken for any impact on existing controls
- **Summary Compliance** This element includes the pertinent summary statements, including a statement regarding license compliance if at issue.
- Verification This element includes the statement, signature, and date that the
 evaluation of nuclear criticality safety was independently verified by another
 qualified criticality safety engineer, who was not directly involved in the preparation
 of the evaluation.

As a final step for an existent process, the criticality safety engineer should walk down the facility and equipment to assure the evaluation reflects reality and should discuss the controls with the operations staff to assure practicality.

 Appendices - This element includes the summary of information ancillary to calculations (e.g., parametric sensitivity studies, references, key inputs, model geometry plots, equipment sketches, useful mixture nuclide identification/number densities, and related data) for each defined system.

Conclusion

Before the start of a new operation with fissile material, or before an existing operation is changed, it shall be determined and documented that the entire process will be subcritical under both normal and credible abnormal conditions. This guidance establishes minimum acceptable format/content elements, which comprise an evaluation of nuclear criticality safety, and provides summary logic for documenting the controlled parameters and derivation of associated nuclear criticality safety limits upon which nuclear criticality safety depends.