

User Experiences with the ICSBEP Distributed SDFs with SCALE – 2019 Edition

Justin Clarity B. J. Marshall Ellen Saylor Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Overview

- S/U techniques for validation -briefly
- Where to find the SDFs
- What is available
- User experiences with SCALE and the ICSBEP SDFs
- Logistical tips and tricks

S/U Techniques for Validation

- Typically used for:
 - Judging similarity of safety application model to critical experiment benchmarks (integral indices)
 - Propagating nuclear data uncertainties into uncertainties in k_{eff} used for penalty for unvalidated minor constituents in model
- Calculate sensitivities of k_{eff} to the underlying nuclear data and propagate

$$- C_{kk} = SC_{\infty \infty}S^T$$

• Calculate correlation coefficients for similarity

$$-c_k = \frac{\sigma_{appexp}^2}{\sigma_{app}\sigma_{exp}}$$

CAK RIDGE

S/U Techniques for Validation (continued)

- Practically speaking this means that you need sensitivity profiles (SDFs) for the application model and a relatively large number of experiments.
- SDFs can take hours to days to calculate with no guarantee that the experiment will be useful.
- Building the Monte Carlo models is also very time consuming
- Fortunately there are a large number of SDFs distributed with the ICSBEP handbook

Location of SDFs

- Located in DiceData directory
 - /ornl contains VALID generated SDFs
 - Organized by 1D (40) or 3D (464) calculation method
 - Stored as .zip files (unzip utility)
 - /sensitivity contains the NEA generated SDFs
 - Organized by ICSBEP fissionable species designation (HEU, PU, U233...)
 - Generated with a variety of methods
 - /ippe_sensitivity generated by the Institute of Physics and Power Engineering
 - Do not work with TSUNAMI-IP

CAK RIDGE

	Move to ▼	Copy to •	Delete Rename	T Easy access ▼ New folder	Properties	Select none
		Org	anize	New	Open	Select
2	> user	s → iir	> handbook > (CD2016 > DiceData		

Name	Date modified	Туре	Size
ippe_sensitivity	4/4/2017 1:32 PM	File folder	
ornl	4/4/2017 1:34 PM	File folder	
📙 sensitivity	4/4/2017 2:09 PM	File folder	
README_NEA_SDFs.pdf	12/12/2016 7:52 AM	Adobe Acrobat D	541 KB

Using TSUNAMI-IP with the ICSBEP SDFs

- All of the ORNL generated SDFs work with TSUNAMI-IP
- Presently TSUNAMI-IP doesn't support all of the NEA generated SDFs
 - MCNP generated SDFs conveniently have MCNP in the title
 - 368 SDFs generated using MKK KENO with elastic P-1 scattering sensitivity
 - These cases will run but the calculated c_k values are generally near zero
 - Can find a list of these files by performing following command:
 - -grep "elastic-P1" list_of_file_names

Uses for ICSBEP SDFs

- Excellent for initial screening of experiments for a given application
 - Akin to comparing an application parameter to a value from DICE
- For further use, the user should perform direct perturbations
 - $-c_k$ trending
 - Must also make sure that the $k_{\rm eff}$ comes from the library and code version you are validating and not the SDFs are used
 - Penalty calculation
- Not every case would need to be checked
 - Those that are similar from the same series should be representative

File handling tips and tricks

- TSUNAMI-IP input files can be cumbersome with large numbers of experiments
- File injection has been supported since SCALE 6.0
 - Allows for a complete file to be brought into a scale input at execution
 - Can save time and aggravation
 - Can be used in experiments section and linking in SDFs before execution

read exps

</path_to_my_base_directory/experiments/exps.dat
end exps</pre>

Generating a file for injection

- First unzip the files from the media to a location of your choosing
- Can generate a single column listing of the SDFs of interest piped to a text file

ls -1 IEU* | awk '{print "ln -s "\$1, \$1}' > shell.file

• The add the path to the files remembering to escape /

```
> sed -i 's/-s //projects\/NEA_SDF\/IEU\/testing\//'
shell.file
```


Conclusion and Acknowledgement

- One of the highest barriers to implementation of S/U based validation is availability of SDFs
- There are a number of SDFs available with the ICSBEP
 handbook
- This document is intended to provide a living guide on how to most efficiently access those files and use them in validation
- This work was sponsored by the US Department of Energy Nuclear Criticality Safety Program

Questions?

