

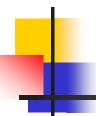
CRITICALITY ACCIDENT ANALYSIS

DOES YOUR FACILITY'S ACCIDENT HAVE A JUSTIFIED BASIS?

Thomas P. McLaughlin, Consultant

OVERVIEW

- What is a Justified Basis?
- Regulatory Drivers
- Resources for Determining (Credible)
 Accidents and Power Histories
- Data Application Example
- Conclusions


WHAT IS A JUSTIFIED BASIS?

- More than an "approved" or "authorized" handbook value
- CREDIBILITY both in Likelihood and Consequence, i.e., data-based.
 - In spite of compliance with ANS-8.1, Section 4.1.2, Process Analysis:
 - Before a new process it shall be determined that ... subcritical ... and credible abnormal conditions.
 - Roll-up issues?

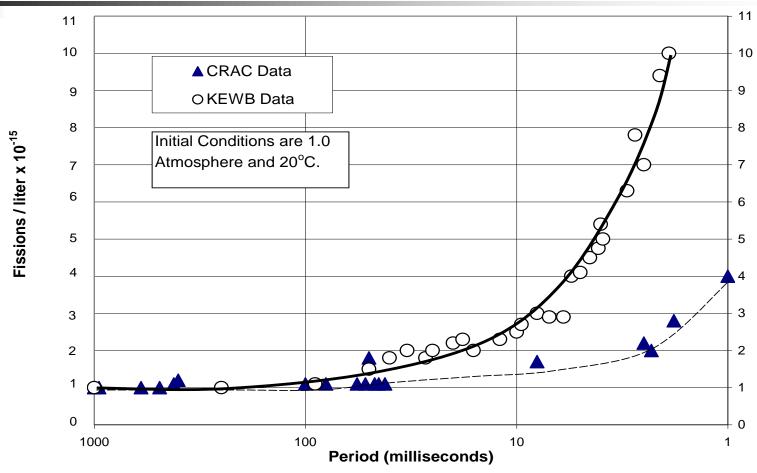
REGULATORY DRIVERS

- ANSI/ANS-8.23, Nuclear Criticality Accident Emergency Planning and Response, 5.1.1
 - Potential criticality accident locations and predicted accident characteristics shall be evaluated and documented
 - This description may be based on professional judgment or a more detailed analysis.
 - The description should include the estimated fission yield.
 - The likelihood of recurrence should be considered

REGULATORY DRIVERS

- ANSI/ANS-8.23, Nuclear Criticality Accident Emergency Planning and Response, 5.1.2
 - An immediate evacuation zone shall be established based on the documented evaluation.
 - Emergency response planning shall shall establish a maximum acceptable value for the absorbed dose at the IEZ boundary.
 - The basis for the maximum acceptable value shall be documented.

RESOURCES FOR DETERMINING ACCIDENT CREDIBILITY


- Process Supervisors and Operators
- Accident Reports (e.g., LA-13638)
- Analyses of actual and postulated accidents, such as the ICNC'91 review paper: Criticality Accident Likelihoods, Consequences, and Emergency Planning by T. P. McLaughlin

RESOURCES FOR DETERMINING POWER HISTORIES

- ANS-8.23 APPENDIX C
 - Accident simulation data: KEWB, CRAC, SILENE, SHEBA, TRACY
 - ORNL Slide Rule
 - Accident Report, LA-13638
 - DOE Handbook 3010-94, Airborne Release Fractions/Rates for Nonreactor Nuclear Facilities, Chapter 6
 - NUREG/CR-6410, Nuclear Fuel Cycle Facility Accident Analysis Handbook

CRITICALITY ACCIDENT SIMULATION DATA

Specific fissions in first spike vs reactor period

CRITICALITY ACCIDENT SIMULATION DATA

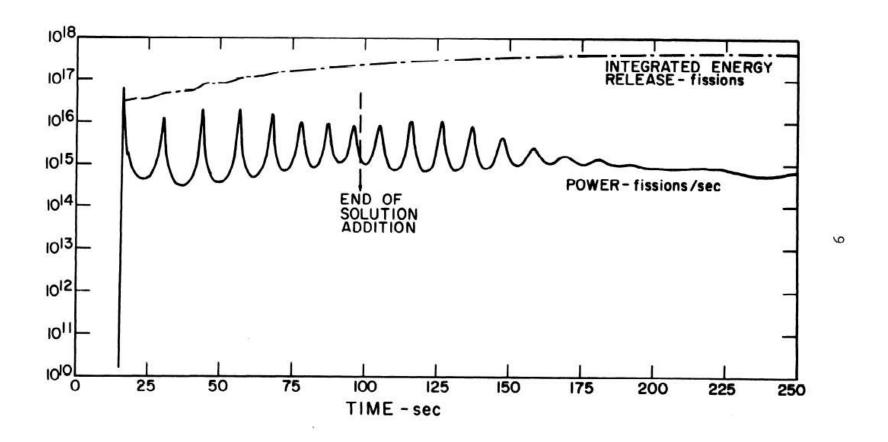
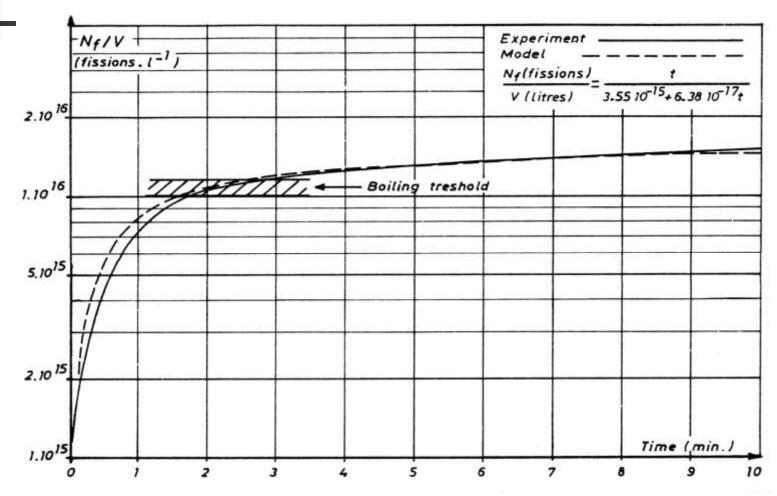
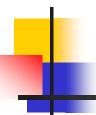



Fig. 5. Fission Rate and Integrated Fission Energy Release in CRAC 19 as a Function of Time.


CRITICALITY ACCIDENT SIMULATION DATA

Bounding fission density vs time, CRAC & SILENE

ORNL SLIDE RULE

- Based heavily on CRAC data
- Very easy to apply and has many additional features/capabilities
- Appears to have a reactivity insertion rate to the half power dependence that results in increasing conservatism at higher ramp rates compared to CRAC data, for the first spike yield.

DOE and NRC HANDBOOKS

- Little discussions of likelihoods with different media
- Recommended bounding total fissions only (with inadequate justification) - no breakdown into first spike and plateau (DOE)
- Describes hypothetical scenario from withdrawn RG's 3.33, 3.34, and 3.35:
 - 1.0+18 in first spike followed by 47 pulses of 1.9+17 at 10 minute intervals over 8 hours for 1.0+19 total fissions. (NRC)

CONCLUSIONS -1

- Accident experience, augmented by common-sense reasoning, supports the contention that non-solution process criticality accidents are inherently much less likely than those that might occur in solution operations.
 - The INCN'91 paper examines this in some detail. Subsequent accident revelations reinforce this paper's conclusions.

CONCLUSIONS -2

 Given the negligible accident rate in non-solution media (one reported, with deliberate violations) it would seem difficult to justify emergency plans and procedures, including a CAAS, for operations with fissile material only in dry forms. This conclusion is based on both risk and cost issues.

CONCLUSIONS -3

For operations with significant quantities of fissile materials in solution form, there is much relevant (accident simulation) data and more being generated. Practically all site- and process-specific criticality accident characterizations and evaluations should be able to be performed readily by the direct application of these data.