daho National Laboratory

Criticality Accident Analysis for INL Shielded Hot Cells

Wade W. Scates Chad Pope J. Todd Taylor

Fuel Conditioning Facility

Outline

- Requirements
- Fuel Conditioning Facility
- Hot Cell Windows
- MCNP Calculation
- Results
- Conclusion

Requirements

ANSI/ANS 8.3, "Criticality Accident Alarm Systems"

- 4.2.1 The need for a criticality alarm system shall be evaluated for all activities in which the inventory of fissionable material in individual unrelated areas exceeds 700 grams of U-235, 500 grams of U-233, 450 grams of Pu-239, or 450 grams of any combination of these three isotopes....
- 4.2.2 A criticality alarm system meeting the requirements of this standard shall be installed in areas where personnel would be subject to an excessive dose....
- Excessive Radiation Dose Any dose to personnel corresponding to an absorbed dose from neutrons and gamma rays equal to or greater than 12 Rad in free air.

ANSI/ANS 8.23, "Nuclear Criticality Accident Emergency Planning and Response"

- 5.1.1 An evaluation shall be conducted and documented to identify potential criticality accident locations.
- 5.1.2 If the above evaluation indicates that a criticality accident is credible, the evaluation shall describe the bounding accident. This description may be based on professional judgment or a more detailed analysis. The description should include the estimated fission yield...

Pyrometelurgical Processing (1990's)

Fissile Materials in Hot Cells

Where could an excursion occur?

- Work Stations
- Process Equipment
- Fissile Material Storage Areas

Where type of excursion?

- Dry
- Metal

Hot Cell Shielding

Hot Cell Window

Slab Identifier (right-to-left)	Thickness (inches)	Density (g/cm ³)
A (hot)	1	2.7
В	9-1/16	3.3
С	1	2.7
D	1	2.7
E	9-1/16	3.3
F	9-1/16	3.3
G	9-1/16	3.3
Н	9-1/16	3.3
J (cold)	1	2.5

Hot Cell Primary Shielding Components

- 5 ft thick high-density concrete walls
- 4 ft thick concrete ceiling and floor
- 2 3 4 Additional ¹/₂ inch seal-welded liner in Argon Cell
 - **27 Viewing Windows**
 - 9 glass slabs ranging in density 2.5 3.3 g/cc 1)
 - 2) ~4 ft of high density glass
 - 3) High Purity Mineral Oil fills 5 of the 8 gaps

Operating Corridor Shielding (Front)

MCNP Operating Corridor Model

Observation Window

Dose Calculations

- Criticality Source
 - 10 kg Pu Sphere
 - Maximum Fission Yield of 10¹⁷

DOE-HDBK-3010-94 (Dry Power and Metal System)

- MCNP
 - KCODE
 - F5 point detector (dose-in-air)
 - Variance Reduction

Dose Calculations (cont.)

$$D_{\max} = D_f \cdot FY_{\max}$$

Maximum Dose per excursion (D_{max}) Dose per Fission (D_f) Maximum Fission Yield

$$D_f = \nu \cdot \left(D_n + D_{\gamma} \right)$$

Neutrons per fission (v) Neutron Dose per Fission Neutron (D_n) Photon Dose per Fission Neutron (D_y)

Parametric looking for Weak Points in Window

Parametric for Periscope Penetration

Results for Operating Corridor

- Dose through intact window is 2.7 Rad-in-air.
- Dose at periscope penetration is 7.7 Rad-in-air
- Dose at master slave penetration is 3.7 Rad-in-air

Conclusion

- Results were better than expected
- No Excessive Dose to Operating Corridor
- Criticality Alarm System is not required

