Derivation of 2-D Thermoelastic Equations of Motion for a Finite Cylinder

Travis Grove

LANL

Outline

- Previous work by Wimett
- Current Work
- Results and Graphs
- Future Work

NATIONAL LABORATORY
UNCLASSIFIED

Why Do We Care?

- Thermoelastic equations can give accurate results when modeling material movement from forces due to temperature changes
- Stresses, strains, displacements can be found
- Applicable to criticality accident analysis
- Difficulties arise from modeling complicated geometries
- "Easiest" is 1-D spherical geometry
- "Second easiest" is simple 2-D cylindrical geometry
- Godiva IV, SPR II can provide good experimental data to test against

Previous Work

- Wimett (1992) modeled the radial direction only, using approximations for the axial direction
- Disk Approximation
- Cylinder Approximation
- Analytical solutions were found and compared to SPR II data
- Myers, et all (1995) developed original MRKJ, using a coupled neutronic-hydrodynamic method
- MRKJ was modified to use coupled neutronicthermoelastic method
- Spherical geometry only

NATIONAL LABORATORY

Current Work

- Goal: Apply the neutronic-thermoelastic method to a 2-D cylindrical system
- Derive the thermoelastic equations in 2-D cylindrical geometry
- Test equations for simple problems
- Implement new model into neutronic-thermoelastic code
- Compare results to experimental data
- First two have been completed, currently working on part 3

Derivation

- Start from three sets of equations:
- Stress-Strain Relations
- Equations of Motion in Cylindrical Geometry
- Strain-Displacement Relations in Cylindrical Geometry
- Concerned with r,z directions, so set derivatives with respect to theta equal to zero and theta displacements equal to zero
- Combine equations for final equation

Derivation: Stress-Strain Relations

$$
\begin{aligned}
& \varepsilon_{r r}=\frac{1}{E}\left[\sigma_{r r}-v\left(\sigma_{\theta \theta}+\sigma_{z z}\right)\right]+\alpha \Delta T \\
& \varepsilon_{\theta \theta}=\frac{1}{E}\left[\sigma_{\theta \theta}-v\left(\sigma_{r r}+\sigma_{z z}\right)\right]+\alpha \Delta T \\
& \varepsilon_{z z}=\frac{1}{E}\left[\sigma_{z z}-v\left(\sigma_{r r}+\sigma_{\theta \theta}\right)\right]+\alpha \Delta T \\
& \sigma_{r \theta}=0 \\
& \sigma_{z \theta}=0 \\
& \varepsilon_{z r}=\frac{1}{2 G} \sigma_{z r}
\end{aligned}
$$

Derivation: Equations of Motion

$$
\begin{aligned}
& \frac{\partial \sigma_{r r}}{\partial r}+\frac{\partial \sigma_{r z}}{\partial z}+\frac{\sigma_{r r}-\sigma_{\theta \theta}}{r}=\rho \frac{\partial^{2} u}{\partial t^{2}} \\
& \frac{\partial \sigma_{r z}}{\partial r}+\frac{\partial \sigma_{z z}}{\partial z}+\frac{\sigma_{r z}}{r}=\rho \frac{\partial^{2} w}{\partial t^{2}}
\end{aligned}
$$

Derivation: Strain-Displacement Relations

$$
\begin{aligned}
& \varepsilon_{r r}=\frac{\partial u}{\partial r} \\
& \varepsilon_{\theta \theta}=\frac{u}{r} \\
& \varepsilon_{z z}=\frac{\partial w}{\partial z} \\
& \varepsilon_{r \theta}=0 \\
& \varepsilon_{r z}=\frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}\right) \\
& \varepsilon_{z \theta}=0
\end{aligned}
$$

Derivation: Final Equations

$$
\begin{aligned}
& \rho \frac{\partial^{2} u}{\partial t^{2}}=\frac{E(v-1)}{(2 v-1)(v+1)}\left[\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}-\frac{u}{r^{2}}\right]+\frac{E}{2(1+v)} \frac{\partial^{2} u}{\partial z^{2}}-\frac{E}{2(2 v-1)(v+1)} \frac{\partial^{2} w}{\partial z \partial r}+\frac{E}{2 v-1} \alpha \frac{\partial \Delta T}{\partial r} \\
& \rho \frac{\partial^{2} w}{\partial t^{2}}=\frac{E(v-1)}{(2 v-1)(v+1)} \frac{\partial^{2} w}{\partial z^{2}}+\frac{E}{2(1+v)}\left[\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}\right]-\frac{E}{2(2 v-1)(v+1)}\left[\frac{\partial^{2} u}{\partial z \partial r}+\frac{1}{r} \frac{\partial u}{\partial z}\right]+\frac{E}{2 v-1} \alpha \frac{\partial \Delta T}{\partial z}
\end{aligned}
$$

Derivation: Boundary and Initial Conditions

- Left Boundary Conditions:

$$
\begin{aligned}
& u(r=0)=0 \\
& w(z=0)=0 \\
& \frac{\partial u(z=0)}{\partial z}=0 \\
& \frac{\partial w(r=0)}{\partial r}=0
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{r r}\left(r=R_{i}\right)=0 \\
& w(z=0)=0 \\
& \frac{\partial u(z=0)}{\partial z}=0 \\
& \sigma_{r z}\left(r=R_{i}\right)=0
\end{aligned}
$$

- Outer Boundary Conditions (zero stress condition):

$$
\begin{aligned}
& \sigma_{r r}(r=R)=0 \\
& \sigma_{z z}(z=H)=0 \\
& \sigma_{r z}(r=R)=0 \\
& \sigma_{r z}(z=H)=0
\end{aligned}
$$

- Initial Conditions (at rest):

$$
\begin{array}{ll}
u(t=0)=0 & \frac{\partial u(t=0)}{\partial t}=0 \\
w(t=0)=0 & \frac{\partial w(t=0)}{\partial t}=0
\end{array}
$$

Results

- Small cylinder of Uranium
- Diameter: 6"
- Height: 6"
- Constant Temperature Difference: 1 degree Celsius
- Boundary Conditions
- Outer: Zero outer stresses
- Inner: Zero displacements at origin
- Finite Difference Algorithm
- Explicit Scheme
- Output
- Displacements
- Stresses, Strains

Displacement

Future Work

- Use this model in cylindrical MRKJ
- Godiva IV, SPR
- Complications
- No longer can use 1-D Partisn code without additional adjustments
- Godiva IV has inner and outer core

