Integration of NCS in the Chemistry and Metallurgy Research Replacement Facility at LANL

2009 ANS Annual Meeting Atlanta, GA June 16, 2009

Douglas Bowen

Nuclear Criticality Safety Group Los Alamos National Laboratory

dgbowen@lanl.gov

Agenda

- Overview of the CMRR Project
 - Broken into two phases
- History of the CMRR project
- Preliminary criticality safety evaluations
- Engineered feature implementation
- Conclusions/Challenges

Overview of the CMRR Project

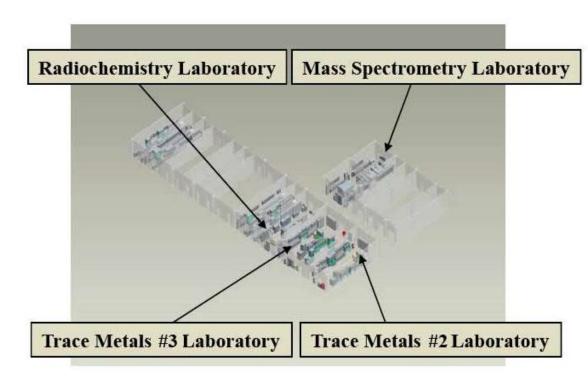
- The Chemistry and Metallurgy Research Replacement (CMRR) is being designed to continue the mission to maintain and certify the nuclear weapons stockpile in the United States
- The CMR building that currently supports this mission was built in the early 1950s
 - Exceeded its useful lifespan
- The project is broken into two phases
 - I Radiological Laboratory, Utility, Office Building
 - II Nuclear Facility

NNS A

Phase I – RLUOB

RLUOB – Radiological Laboratory, Utility, and Office Building

- Nearly 20,000 ft² of radiological lab space
- Training center
 - 4 classrooms
 - 2 non-rad training simulation labs
- Centralized utility building for all CMRR facilities
- Office space for 350 personnel
- Facility incident command center and facility operations center



Phase I – RLUOB

- Designed as a radiological facility
- No criticality safety concerns – Design guidance was limited
 - ≤ 8.4 grams of Pu-239 equivalent
 - However....

NNS

Phase II – CMRR Nuclear Facility

CMRR Nuclear Facility

- Hazard Cat. 2, Security Cat. 1 facility
- Single building with ~22,500 ft² of lab space
- Operations include
 - Actinide chemistry and materials characterization
 - Actinide R&D activities
 - SNM vaults
 - 306 glovebox enclosures
 - Extensive material transfer system
- ~350 new fissile material operations

UNCLASSIFIED

History of NCS Support

- LANL NCS group has been a member of the project team since early 2002
- NCS group has been working directly with facility designers and CMRR project staff
 - Face-to-face interactions with the designers
 - ANS-8 standards, handbook data & calculations were used to support the conceptual and preliminary design stages
 - Documentation requirements prior to DOE-STD-1189 not well defined
 - As the design matured, more formal NCS guidance was provided per DOE-STD-1189
 - "To support design development, it is important to develop fundamental design criteria to address typical criticality safety concerns (e.g., safe geometry) and to incorporate these criteria early in the design process"
 - "Identify criticality safety issues early in the design process and design the facility in such a way as to preclude criticality problems"

History of NCS Support

DOE-STD-1189-2008

Phase Interface	Mission Need	Conceptual Design	Preliminary Design	Detailed Design	Construction	Resource Requirements and Guidance
Criticality Safety	Determine criticality potential Input to Hazard Categorization	Criticality Control Philosophy Criticality guidance for Design	Preliminary CSEs Updated criticality safety design requirements	Updated preliminary CSEs Re-assess criticality limits and controls based on design and operating the process/facility CSE input to PDSA (Hazard Analysis and TSR derivation)	Update and issue CSEs TSRs and operating procedures will incorporate criticality controls, as developed under the guidance of DOE-STD-3007 and DOE G 423.1-1. Validate NCS controls in field Prepare DSA Ch. 6	• DOE-O-420.1B • DOE-STD-3007 2007 • DOE-G-421.1-1
	LANI	NCS	—	→	→	
	LANL NCS Program Still "Expert-Based" < 2005		< late 2008	2009	> 2009	

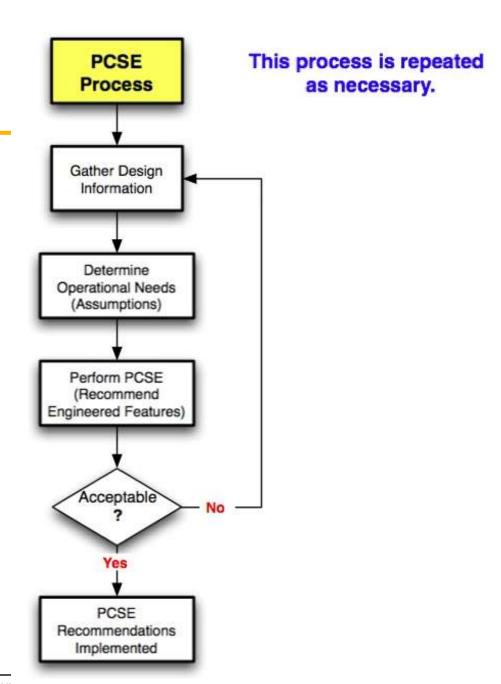
NATIONAL LABORATORY

UNCLASSIFIED

Preliminary Criticality Safety Evaluations

Audience is not only supervisors & operators

- Safety Basis personnel
- Designers
- LANL CMRR project staff
- Regulators


NNSA concurrence of the preliminary evaluation process

- Assisted with the development of the process
- PCSE content and limit summary tables
- PDSA implementation process

Internal NCS Policy generated for the PCSE process for CMRR

- PCSEs are broadly written and are currently system-focused
- Process-focused evaluations will be performed at a much later date
- PCSEs are iterative in nature
 - Policy allows for quick revisions
 - Effective communication is essential to maximize the efficiency of the process

Preliminary Criticality Safety Evaluations

- PCSEs are iterative in nature and are revised when
 - Design features are changed/modified
 - Operational reasons
 - Results of the PCSE
- NCS involvement is crucial because design features for criticality safety may not be compatible with other safety disciplines
 - Fire protection issues
 - Water-based fire suppression in gloveboxes
 - Shielding concerns in SNM vaults

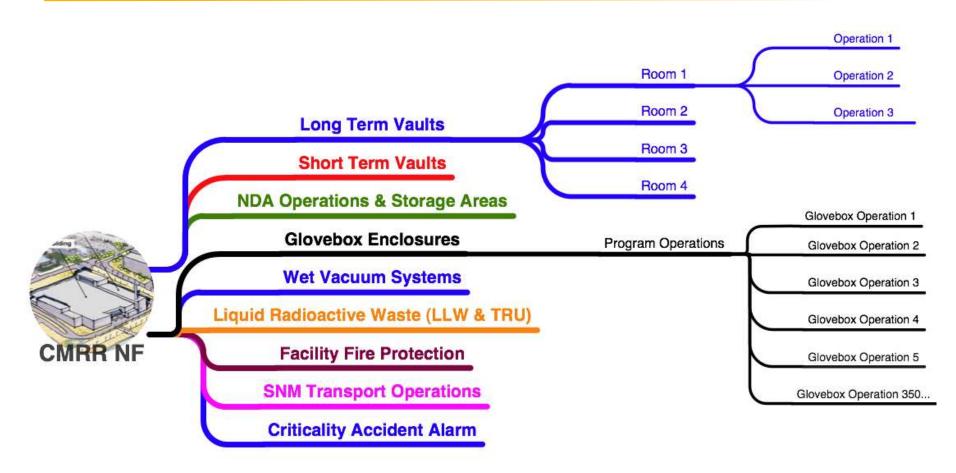
PCSE Recommendations – Summary

- Analyzed Configuration
 - Summary of the design, i.e., system drawings and system design description (SDD)
- Analyzed Design Summary
 - Information from the analyzed configuration required for the PCSE
- Safety Significant Engineered Feature Requirements
 - Required for worker safety where a single engineered feature failure could result in a criticality accident
 - Example: vault rack door latch failure during a seismic event that results in the ejection of multiple containers of fissile material from a safe to an unsafe configuration

PCSE Recommendations – Summary

- Program Controlled Engineering Feature Requirements
 - Those engineered features relied upon for criticality safety margin
 - Do not rise to the safety significant level
- Defense-in-depth features
 - Those features that are recommended but not needed for criticality safety margin
- Administrative limit assumptions
 - Example: mass limits, spacing limits, etc., that are required to ensure the criticality safety margin, i.e., subcriticality for all normal and credible abnormal conditions

Preliminary Criticality Safety Evaluations


The following systems have been extensively evaluated so far

- Long and short term vaults
- Non-destructive assay operations
- Glovebox enclosures
- Wet vacuum systems
- Radioactive and caustic liquid waste operations
- Waste drum processing and storage
- NF fire protection concerns
- Fissile material transport operations
- Criticality accident alarm system guidance

PCSE Future Evolution

Engineered Feature Implementation

PCSE limits were generated with the help of

- Designers
- Safety basis personnel
- CMRR project staff

The engineered features are implemented into the PDSA

- Ch. 3 Hazards analysis references PCSE
- Ch. 4 Safety significant engineered features are potential TSRs
- Ch. 6 Discussion of the LANL NCS program

SDDs discuss the engineered features

- Function as a configuration management database
- Design changes that affect NCS will drive PCSE revisions

Conclusions/Challenges

- CMRR project consists of two phases
- NCS has been integrated into the CMRR NF via PCSEs
 - Engineered features developed with administrative limit "assumptions"
 - System description documents function as an early configuration management database
- Effective communications between CMRR staff, DNFSB, Designers, NNSA, etc. has been the key to success
- Implementation of the PCSE limits remains a difficult issue

