GE Hitachi Nuclear Energy

PARANAL: An Efficient Tool for Parametric Analysis of Criticality Safety

Qi Ao

Data, Analysis, and Operations for Nuclear Criticality Safety

ANS Annual Meeting June 14 – 18, 2009 Atlanta, Georgia

- Introduction
- Features of PARANAL
- Methodology
- Examples
- Summary and Conclusions

Introduction

Effective multiplication factor (k_{eff}) of a fissionable material system is a function of a large number of system variables x=[x₁, x₂, ..., x_n]

$k_{eff} = k(x)$

where $x_i = mass$, density, enrichment, moderation, geometry, reflection, etc.

For nuclear criticality safety controls, a domain, x_s, must be found such that
k(x) ≤ USL (upper subcriticality limit)

for all $\boldsymbol{x} \in \boldsymbol{x}_s$

• A safe control limit on variable x_i can be expressed as

 $\mathbf{x}_{\text{lim}} = \max(\mathbf{x}_i) \text{ or } \min(\mathbf{x}_i)$

for $\mathbf{x}' \in \text{domain}(\mathbf{x}_s)$ boundary

Introduction (con't)

- Parametric analysis is an excellent way to find the safe limit on a control variable (parameter). However, to find a solution that satisfies above requirements, analysts are faced with
 - tedious and time-consuming task of running multiple simulations
 - accurate identification of safe domain and safe limits
- Few tools are available that can automatically solve for entire ranges of specified variables and identify accurate limits. Most existing methods are based on a single-parameter regression fitting of k_{eff}, which may result in less accuracy due to limited and discrete k_{eff} data and sometimes human errors.
- In order to achieve more accurate safety limits at a significantly low cost of analysts' time, PARANAL has been developed with
 - numerical interpolation over entire ranges of specified variables
 - automation and visualization

HITACH

Features of PARANAL

PARANAL – <u>Parametric Analyzer for Criticality Safety</u>

- Creating continuous k_{eff} functions that interpolate discrete k_{eff} data obtained from parametric simulations of a fissionable system
- Determining safe k_{eff} domains for specified parameters for a given USL
- Searching the safety limit of a control parameter over the entire specified domain
- Generating graphical and numerical results
- Numerical Interpolation Methods

Lower order 2-D polynomial interpolation to fit the k_{eff} function in pieces, include:

- Bilinear
- Bicubic
- Bicubic Spline

A Matlab-Based Tool

HITACHI

PARANAL Interpolation Methods

Forturos	Interpolation Method				
reatures	Bilinear	Bicubic	Bicubic Spline		
Closest neighborhood points	2x2 (4 points)	4x4 (16 points)	4x4 (16 points)		
Interpolating Function	Piecewise Bilinear	Piecewise Bicubic Hermit Polynomial	Bicubic Spline		
Continuity	Function	Function 1 st Derivative	Function 1 st Derivative 2 nd Derivative		
Smoothness	Low	Higher	Highest		
Accuracy	Low	Higher	Highest		
Efficiency	High	Low	Low		

HITACHI

Methodology (con't)

2-D Interpolation Example

HITACHI

PARANAL: An Efficient Tool for Parametric Analysis of Criticality Safety ANS Annual Meeting Atlanta, Georgia, June 14 - 18, 2009 7

Methodology (con't)

- k_{eff} Contour Plot
 - A graphical technique for representing a 3-D k_{eff} function by plotting constant k_{eff} slices on a 2-D parameter (x, y) format
 - The k_{eff} contour plot is formed by:
 - Horizontal axis: Vertical axis: Lines:

parameter x parameter y iso-k_{eff} values

- Safe Parameter Domain
 - Safe parameter domain is a k_{eff} contour region where k_{eff} (x,y) < k_{lim} (safe limit of k_{eff}).
- Safe Parameter Limit
- The safe limit of a parameter x, y is given by

x_{lim} or y_{lim}= MIN (x or y) or MAX (x or y)

under the condition of $k_{eff}(x,y) = k_{lim}$

Subcritical Mass Limit for 10 wt% Enriched Homogeneous UO₂-H₂O Mixture

- UO₂ Density: 10.96 g/cm²
- Geometry: Spherical
- Reflector: 1-foot thick H₂O
- Parameters (range):

 UO_2 mass (8-16 kgs) H₂O content (50-80 wt%)

Subcritical k_{eff} limit: 0.97

Table 1. keff* Results of Spherical UO2-H2O System

k _{eff} *		UO2 Mass (kg)					
		8	10	12	14	16	
l ₂ O Moderation (wt%)	50	0.8687	0.9129	0.9541	0.9830	1.0101	
	55	0.8863	0.9339	0.9664	0.9973	1.0233	
	60	0.9002	0.9428	0.9748	1.0066	1.0274	
	65	0.9028	0.9451	0.9801	1.0066	1.0299	
	70	0.8987	0.9402	0.9713	0.9929	1.0150	
	75	0.8821	0.9206	0.9481	0.9701	0.9877	
H	80	0.8441	0.8776	0.9016	0.9250	0.9394	

Note: $k_{eff}^* = k_{eff} + 3\sigma$ - bias (σ = calculational standard deviation in k_{eff})

Traditional 1-D Interpolation

PARANAL: An Efficient Tool for Parametric Analysis of Criticality Safety ANS Annual Meeting Atlanta, Georgia, June 14 - 18, 2009 11

PARANAL 2-D Interpolation

Minimum safe UO₂ mass limit = 11.37 kgs at optimal H_2O moderation = 64.85 wt%

k_{eff} verification: 0.9705±0.0011

PARANAL: An Efficient Tool for Parametric Analysis of Criticality Safety ANS Annual Meeting Atlanta, Georgia, June 14 - 18, 2009

Subcritical Spacing Limit for an Infinite Array of Infinite-long Tanks Containing 8 wt% Enriched UO₂F₂ Solution

- UO_2F_2 Density: 6.37 g/cm²
- Geometry: 8" in diameter
 - Triangular pitch
- Reflector (bottom): 24" thick Concrete
- Interspersed H₂O: 0.00001 g/cm²
- Parameters (range):

Center-to-center spacing (100-300 cm)

H₂O content (10-60 wt%)

• Subcritical k_{eff} limit: 0.97

HITACHI

Table 2. keff* Results of UO2F2 Tank Array

k _{eff} *		Center-to-Center Spacing (cm)				
		100	150	200	250	300
H ₂ O Moderation (wt%)	10	1.1931	1.0330	0.8982	0.7952	0.7178
	20	1.2981	1.1368	1.0000	0.9005	0.8249
	30	1.3240	1.1603	1.0290	0.9321	0.8657
	40	1.3082	1.1439	1.0185	0.9264	0.8620
	50	1.2590	1.0995	0.9776	0.8932	0.8346
	60	1.1752	1.0238	0.9092	0.8305	0.7752

Traditional 1-D Interpolation

PARANAL: An Efficient Tool for Parametric Analysis of Criticality Safety ANS Annual Meeting Atlanta, Georgia, June 14 - 18, 2009

PARANAL 2-D Interpolation

Minimum safe Spacing = 229.2 cm at optimal H₂O moderation = 32.22 wt%

k_{eff} verification: 0.9690±0.0011

PARANAL: An Efficient Tool for Parametric Analysis of Criticality Safety ANS Annual Meeting Atlanta, Georgia, June 14 - 18, 2009

Summary and Conclusions

- PARANAL provides an exceptionally efficient tool for parametric studies of criticality safety analyses.
- PARANAL allows accurate determination of the safe domain and limits of criticality parameters with two-dimensional interpolation techniques.
- PARANAL can be extended to multiple (>2) parametric analyses using N-dimensional interpolation techniques, but the visualization of an N-dimensional k_{eff} function and safe parameter domain will be difficult or impossible.
- Error estimates for interpolation may be taken into account in determining safe parameter limits, especially when extrapolation is needed.

HITACH