Neutronic Isolation Media for Degraded Spent Fuel Storage in Casks

ANS Winter Meeting November 29, 2009

Benjamin T Baranko Nuclear Safety Associates Idaho Cleanup Project CH2M-WG Idaho, LLC

Introduction of Problem

- Interim Storage of SNF in Casks
- Degraded fuels in water filled, non-draining storage cans (5" diameter)
 - Requires conservative (homogeneous) modeling, fuel is well moderated
- Cask to be drained of water

 Causes significant interaction between fuel cans
- Goal to maximize number of fuel cans to be stored in cask
- Up to 1400 grams U-235 per can
- Various cask insert fill (isolation) materials investigated

Fuel Can

Cask Insert

Cask Modeling

- Light Blue: Fuel Region
- Dark Blue: Stainless
 Steel
- Green: Fill Material
- Yellow: Lead
- Magenta: Water
- Cask ~51" Inside Diam.
- 16 Fuel Cans per Insert
- Four Tiers of Inserts/Fuel

Results of Flooded vs Drained Cask

k_{eff} vs. Fuel U-235 Concentration (g/L)

Neutron Absorbers?

- Interspersed strong absorbers (neutron poisons) ineffective without additional moderation
 - With drained cask, no moderation of fission neutrons between interacting fuel cans to allow thermal absorber effectiveness
- Placement of absorbers inside fuel cans amongst fuel is not practical
 - Preference not to remove fuel can lids
 - Difficulty in ensuring effective poison dispersal
- General preference to avoid crediting strong neutron absorbers

Polyethylene or Concrete Fill

Polyethylene:

- High H density
- Low melting temperature
- Combustible

Concrete: Low H density Strong and Stable/Durable

Shieldwerx SWX-277 Fill Material

(Field-Castable Heat Resistant Shielding)

- Solid concrete-like material with high hydrogen content aggregate
- Non-combustible, rather low thermal conductivity
- Lower bulk density and strength than concrete
- Borated with natural B (nominally 1.56 weight percent)
- In use in DOT approved ES-3100 Type B Container
- Calculations:
 - With and without boron
 - Conservative H quantity (no free [pore]) water)
 - Conservatively low bulk density
 - Conservative temperature

Fill Material Hydrogen Density (atoms/cm³)

Polyethylene	~8.0 x 10 ²²
Water	6.7 x 10 ²²
Shieldwerx SWX-277	~3.4 x 10 ²²
Concrete	~1.0 x 10 ²²

SWX-277 Results

Conservative Normal Condition Composition

SWX-277 Upset Conditions

- Dehydration with elevated temperature results in H loss
 - Some loss over ~100 ° C
 - Significant loss at ~230 ° C
 - Requires significant time at elevated temperature for H loss
- Therefore, need for thermal/fire analyses and estimates on resulting H loss
- Drop mechanical damage

Model Cross Section

Elevated Temperature SWX-277 Results

Results Comparison k_{eff} vs. Fuel Can U-235 Concentration (g/L)

Design Issues

Practical concerns and constraints:

- Lower strength than concrete
- Heat Transfer
- QA sampling and testing to verify required bulk density and lack of voids
- Pumping/transfer difficulty

Conclusion

- Effective isolation/interaction reduction for this application
- Neutron poison not credited
 - Simplifies QA, testing, Standards compliance
- Neutron poison present to provide defense-in-depth
- Stable, durable material that met all design requirements of this application