MCNP Variance Reduction Techniques: What to Use When, and How

a la

N

James Laird University of Michigan Darby S. Kimball Bechtel National, Inc.

2009 American Nuclear Society Winter Meeting November 18, 2009

Introduction

- VRTs can help your code converge faster
- Staggering array of VRT options in MCNP
- Limited guidance for the new analyst
- Also limited time to learn

How VRTs Work

- Convergence is measured by statistical uncertainty (σ)
- Also by some built-in statistical tests
- Uncertainty goes down when:
 - More particles reach detector (increase ratio)
 - Contribution from each particle is about the same (reduce variance)

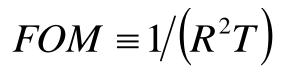
VRTs in MCNP: Truncation Methods

- Increase ratio of particles reaching detector
- by discarding low-contribution particles
- Energy cutoff, time cutoff
- Also: geometry cutoff

VRTs in MCNP: Population Control Methods

- Reduce variance in particle contributions
- by controlling number of tracks in interesting and uninteresting areas
- or adjusting weight of important and unimportant particles
- Geometry splitting and Russian roulette, energy splitting, time splitting, weight cutoff, weight windows

VRTs in MCNP: Modified Sampling Methods

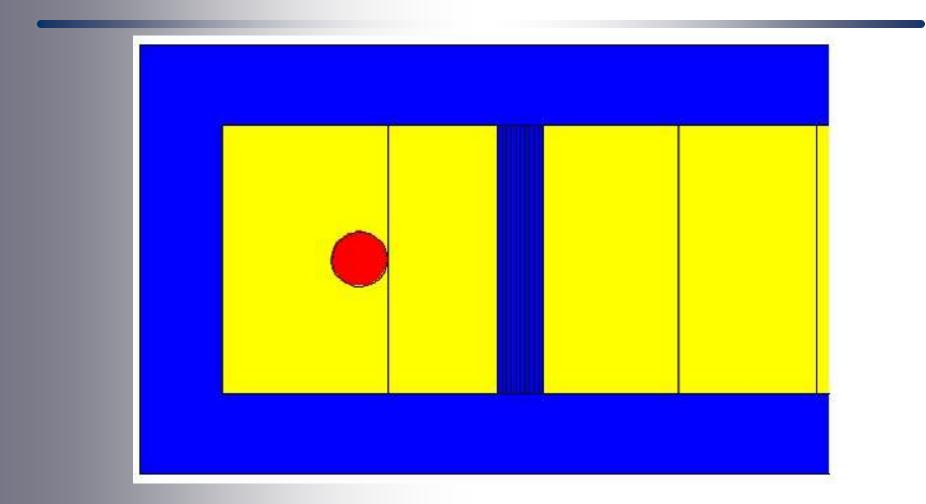

- Increase ratio of particles reaching detector
- by altering statistical sampling to favor important particles
- Exponential transform, implicit capture, forced collisions, source biasing

VRTs in MCNP: Partially Deterministic Methods

- Increase ratio of particles reaching detector
- AND reduce variance in particle contributions
- by circumventing the normal random walk
- Point detectors, DXTRAN spheres

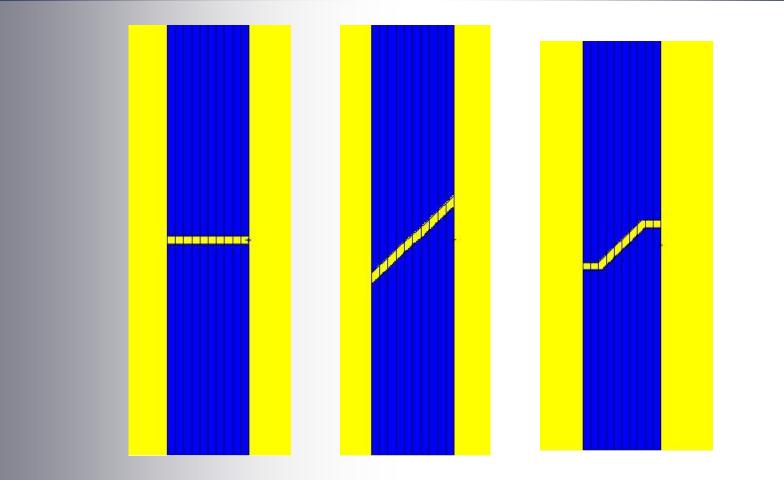
Comparison Approach

- Comparison basis:
 - Figure of Merit

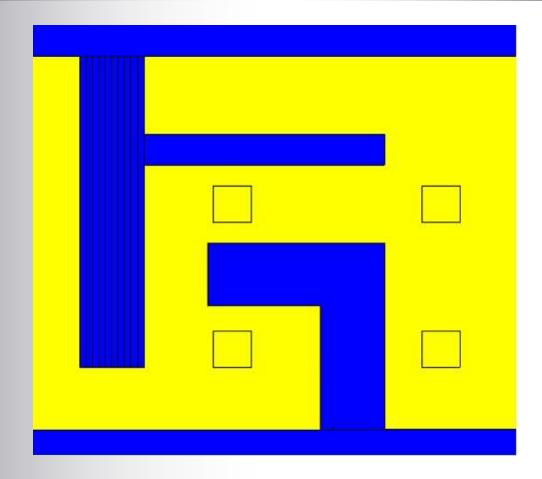


10 statistical tests

VRTs: 35 combinations of techniques and options


2009 American Nuclear Society Winter Meeting

Bulk Shield Wall Model


2009 American Nuclear Society Winter Meeting

Penetrations Models

2009 American Nuclear Society Winter Meeting

Labyrinth Model

2009 American Nuclear Society Winter Meeting

What to Use When Computer Time is Important

Highest FOM / most tests passed:

- Bulk shield:
 - Weight windows by energy and cell plus exponential transform (FOM 73, 10 checks passed)
 - Weight windows by energy and cell (FOM 45, 9 checks)
 - Importance splitting plus exponential transform (FOM 41, 9 checks)
 - Weight windows by cell only plus exponential transform (FOM 38, 10 checks)

2009 American Nuclear Society Winter Meeting

What to Use When Computer Time is Important

Highest FOM / most tests passed:

- Penetrations:
 - Weight windows by energy and cell plus DXTRAN (FOM 11-161, 10 checks passed)
 - Everything else had FOM about 1/10 of that case
 generally combinations involving weight
 windows, DXTRAN performed well

What to Use When Computer Time is Important

Highest FOM / most tests passed:

- Labyrinth:
 - Weight windows by energy and cell plus DXTRAN (FOM 76, 9 checks passed)
 - Weight windows by cell only plus DXTRAN (FOM 44, 9 checks passed)
 - Weight windows by energy and cell (FOM 38, 9 checks passed)

Selected VRTs by Time to Implement

Implicit capture, weight cutoff, time cutoff, energy cutoff	2 minutes
Source biasing by direction	15 minutes
Forced collisions	25 minutes
Importance splitting	45-60 minutes
Weight windows	45-180 minutes
DXTRAN	90 minutes
Exponential transform	90-210 minutes

2009 American Nuclear Society Winter Meeting

What to Use When Human Time is Important

- Source biasing by direction or energy
- Simple importance splitting
- Point detectors

Selected VRTs by Time to Learn

Anything with cut card	5 minutes
Importance splitting	15 minutes
Source biasing	30 minutes
Forced collisions	30 minutes
Energy splitting	60 minutes
Point detectors	2 hours
Weight windows	1 day
Weight windows by energy	1 day
Exponential transform	2 days
DXTRAN spheres	4 days

2009 American Nuclear Society Winter Meeting

What to Learn First

- Importance splitting
- Weight windows
- Exponential transform
- Point detectors / DXTRAN

Sanity Check

- Always check: did it help or hurt?
- Watch out for improvements that aren't
- Think like a malicious particle
- Are you accidentally ignoring particles?
- Always balance the time you are spending with the efficiency gain

Tips & Tricks

- Single biggest help is properly creating problem
- Both importance splitting and weight windows recommended for nearly every problem – default settings are good, and one or two iterations generally enough
- Weight windows are faster to implement when importance splitting also used

Tips & Tricks

- Leave default VRTs on, generally (weight cutoff and implicit capture)
- However, do not use weight cutoff with forced collisions
- Definitely use weight cutoff with DXTRAN spheres to reduce cross-talk

Conclusions

- Learn how to use weight windows
- For bulk shield, use weight windows, then add exponential transform for hard problems
- For penetrations, use DXTRAN spheres, then add weight windows and/or forced collisions
- For labyrinths, use weight windows, then add point detectors or DXTRAN spheres

2009 American Nuclear Society Winter Meeting November 17, 2009