On the Accuracy of the Differential Operator Monte Carlo Perturbation Method for Eigenvalue Problems

Jeffrey A. Favorite Applied Physics Division Los Alamos National Laboratory Los Alamos, NM, USA

American Nuclear Society Winter Meeting Washington, DC, November 15-19, 2009

UNCLASSIFIED

Slide 1 of 11

Introduction

• Many studies have pointed out the inaccuracy of the differential operator Monte Carlo perturbation method for k_{eff} eigenvalue problems.

Example: Density change in outer 0.1-cm shell of 8.741-cm radius HEU sphere:

• The standard implementation of the differential operator method (as in MCNP) assumes that the fission source distribution is unperturbed.

+ This talk discusses the mathematical implications of that assumption.

+ This problem is unrelated to the number of Taylor terms retained in the expansion.

• Recently, it has been observed that k_{eff} sensitivities were more accurate for capture and fission cross sections than for scattering.

+ Conclusion: Perturbations to the scattering cross section affect the fission source distribution more than perturbations to the capture cross section do.

UNCLASSIFIED

Slide 2 of 11

The *k_{eff}* Eigenvalue Equation

• The one-group k_{eff} eigenvalue equation, isotropic scattering: $\hat{\Omega} \cdot \vec{\nabla} \psi(r, \hat{\Omega}) + \Sigma_t(r)\psi(r, \hat{\Omega}) - \Sigma_s(r)\phi(r) = \frac{1}{k_{eff}} v\Sigma_f(r)\phi(r).$ Scalar flux: $\phi(r) \equiv \int_{A_T} d\hat{\Omega} \psi(r, \hat{\Omega})$

Total cross section: $\Sigma_t(r) = \Sigma_c(r) + \Sigma_f(r) + \Sigma_s(r)$.

- Define $S(r) \equiv v \Sigma_f(r) \phi(r)$.
- Let the flux be normalized to $\int dV v \Sigma_f(r) \phi(r) = k_{eff}$.
- The inhomogeneous equation

$$\hat{\boldsymbol{\Omega}} \cdot \vec{\nabla} \boldsymbol{\psi}(r, \hat{\boldsymbol{\Omega}}) + \boldsymbol{\Sigma}_{t}(r) \boldsymbol{\psi}(r, \hat{\boldsymbol{\Omega}}) - \boldsymbol{\Sigma}_{s}(r) \boldsymbol{\phi}(r) = S(r)$$

has the same solution as the homogeneous equation, and this solution satisfies the normalization.

• These concepts are not specific to any code or solution method.

UNCLASSIFIED

Slide 3 of 11

The *k_{eff}* Eigenvalue Equation

• The one-group k_{eff} eigenvalue equation, isotropic scattering:

$$\hat{\boldsymbol{\Omega}} \cdot \vec{\nabla} \boldsymbol{\psi}(r, \hat{\boldsymbol{\Omega}}) + \boldsymbol{\Sigma}_t(r) \boldsymbol{\psi}(r, \hat{\boldsymbol{\Omega}}) - \boldsymbol{\Sigma}_s(r) \boldsymbol{\phi}(r) = \frac{1}{k_{eff}} \boldsymbol{v} \boldsymbol{\Sigma}_f(r) \boldsymbol{\phi}(r).$$

Scalar flux: $\phi(r) \equiv \int_{4\pi} d\hat{\Omega} \psi(r, \hat{\Omega})$ Total cross section: $\Sigma_t(r) = \Sigma_c(r) + \Sigma_f(r) + \Sigma_s(r)$.

$$\sum L\psi(r,\hat{\mathbf{\Omega}}) = \frac{1}{k_{eff}} v \Sigma_f(r) \phi(r)$$

- Define $S(r) \equiv v \Sigma_f(r) \phi(r)$.
- Let the flux be normalized to $\int dV v \Sigma_f(r) \phi(r) = k_{eff}$.
- The inhomogeneous equation $\hat{\Omega} \cdot \vec{\nabla} \psi(r, \hat{\Omega}) + \Sigma_t(r) \psi(r, \hat{\Omega}) - \Sigma_s(r) \phi(r) = S(r)$

has the same solution as the homogeneous equation, and this solution satisfies the normalization.

• These concepts are not specific to any code or solution method.

UNCLASSIFIED

Slide 4 of 11

Notation for Perturbation Theory

• The initial, unperturbed configuration is denoted with a subscript 0:

$$L_0 \psi_0(r, \hat{\mathbf{\Omega}}) = \frac{1}{k_{eff,0}} v \Sigma_{f,0}(r) \phi_0(r), \text{ or}$$
$$L_0 \psi_0(r, \hat{\mathbf{\Omega}}) = S_0(r),$$

with

$$k_{eff,0} = \int dV \, v \Sigma_{f,0}(r) \phi_0(r).$$

• The perturbed configuration is denoted with a prime:

$$L'\psi'(r,\hat{\mathbf{\Omega}}) = \frac{1}{k_{eff}} v \Sigma'_f(r) \phi'(r), \text{ or}$$
$$L'\psi'(r,\hat{\mathbf{\Omega}}) = S'(r),$$

with

$$k'_{eff} = \int dV \, v \Sigma'_f(r) \phi'(r).$$

• The perturbation in k_{eff} is

$$\Delta k_{eff} = k'_{eff} - k_{eff,0} = \int dV \, v \Sigma'_f(r) \phi'(r) - \int dV \, v \Sigma_{f,0}(r) \phi_0(r).$$

UNCLASSIFIED

Slide 5 of 11

The Power Series Solution Method

- The standard power series method of solving the eigenvalue problem with Monte Carlo:
 - + Start with a guess for the fission source distribution S(r).
 - + Simulate the transport process, saving new fission source points and scoring k_{eff} for information.
 - + Use the new collection of fission source points as S(r) in the next iteration.
 - + Repeat until the fission source converges.

(+ Aside: How do you know if the fission source converges? Until recently, you guess, using cycle-by-cycle k_{eff} .)

+ Once the fission source converges, continue as before, but collect k_{eff} and tallies for real.

- This process essentially solves $L\psi(r, \hat{\Omega}) = S(r)$, a fixed-source problem, in each cycle.
- The differential operator method attempts to estimate the effect of the perturbed transport operator on k_{eff} and tallies in active cycles.

UNCLASSIFIED

Slide 6 of 11

Putting It All Together

• warning: fundamental eigenfunction (fission distribution) approximated as unperturbed.

• The differential operator method uses the unperturbed source but the perturbed transport operator, estimating the solution to

$$L'\widetilde{\psi}(r,\hat{\mathbf{\Omega}}) = S_0(r)$$

and using it in

$$\Delta k_{eff,DO} = \int dV \, v \Sigma'_f(r) \widetilde{\phi}(r) - \int dV \, v \Sigma_{f,0}(r) \phi_0(r).$$

• The accuracy of the differential operator method is affected not only by whether $S_0(r)$ is a good approximation of S'(r), but also by whether $\tilde{\phi}(r)$ is a good approximation of $\phi'(r)$.

UNCLASSIFIED

Slide 7 of 11

Relating to Deterministic Perturbation Methods

• In deterministic perturbation theory, "ignoring the effect of the perturbation on the flux distribution" leads from the exact expression for the eigenvalue difference

$$\Delta \lambda = \frac{1}{k'_{eff}} - \frac{1}{k_{eff,0}} = \frac{\left\langle \psi_0^*, \left(\Delta L - \frac{1}{k_0} \Delta F \right) \psi' \right\rangle}{\left\langle \psi_0^*, F' \psi' \right\rangle}$$

to the approximation

$$\Delta \lambda_{\rm 1st} = \frac{\left\langle \psi_0^*, \left(\Delta L - \frac{1}{k_0} \Delta F \right) \psi_0 \right\rangle}{\left\langle \psi_0^*, F' \psi_0 \right\rangle}.$$

• In the differential operator method, "ignoring the effect of the perturbation on the fission source distribution" leads from

$$\Delta k_{eff} = k'_{eff} - k_{eff,0} = \int dV \, v \Sigma'_f \phi' - \int dV \, v \Sigma_{f,0} \phi_0$$

to the approximation

$$\Delta k_{eff,DO} = \int dV \, v \Sigma'_f \widetilde{\phi} - \int dV \, v \Sigma_{f,0} \phi_0.$$

UNCLASSIFIED

Slide 8 of 11

Test Problem

os Alamos

- One group, spherical, two regions, fuel (radius 6.12745 cm) surrounded by reflector (thickness 3.063725 cm). Analytic $k_{eff,0} = 1$. PARTISN $S_{64} k_{eff,0} = 1.0000128$.
- Results for fuel capture and fuel scattering cross-section perturbations (independent):

		Σ_c Pert. (-20%)	Σ_s Pert. (+5%)	Calc. Type
Exact Δk_{eff}	$k'_{e\!f\!f}$	1.0130141	1.0069433	Deterministic
	\widetilde{k}	1.0132118	1.0060818	Deterministic
	$>k'_{eff}-k_{eff,0}$	0.0130013	0.0069305	Deterministic
	$\widetilde{k} - k_{e\!f\!f,0}$	0.0131990	0.0060690	Deterministic
	Error	1.52%	-12.43%	N/A
	$\Delta k_{e\!f\!f,DO}$	$0.0131810 \pm 0.01\%$	$0.0060493 \pm 0.12\%$	Stochastic
	Error	1.38%	-12.71%	N/A

• k_{eff} is much more sensitive to the fuel scattering cross section than to the fuel capture cross section, since a 5% change in the former has about half the effect of a -20% change in the latter.

• Although the Σ_s perturbation is smaller than the Σ_c perturbation and has a smaller effect on k_{eff} , the differential operator method is much less accurate at predicting the effect.

• In both cases, the differential operator method very accurately estimates $\tilde{k} - k_{eff,0}$.

UNCLASSIFIED

Slide 9 of 11

Test Problem Fluxes

• Deterministic fluxes (differences are plotted; the maximum unperturbed flux is $9.745 \times 10^{-3} \text{ cm}^{-2} \text{s}^{-1}$):

Fig. 1. Fluxes for the capture cross section perturbation.

Fig. 2. Fluxes for the scattering cross section perturbation.

• ϕ_0 more closely matches ϕ' (therefore S_0 more closely matches S') for the capture cross section perturbation than for the scattering cross section perturbation (the difference is flatter).

• $\tilde{\phi}$ more closely matches ϕ' for the capture cross section perturbation than for the scattering cross section perturbation.

UNCLASSIFIED

Slide 10 of 11

Summary and Conclusions

• The differential operator method essentially solves the inhomogeneous transport equation with a perturbed transport operator and an unperturbed fission source and uses the resulting flux $\tilde{\phi}(r)$ to estimate Δk_{eff} .

• This conclusion is *suggested* by the consistency between the argument and the numerical results, but it is not *proven*.

• MCNP5 has more trouble estimating Δk_{eff} due to scattering cross section perturbations than capture cross section perturbations because $\tilde{\phi}(r)$ differs more significantly from $\phi'(r)$ when the scattering cross section is perturbed, even when the effect on Δk_{eff} is smaller.

+ However, in one test problem, the k_{eff} sensitivity to $S(\alpha,\beta)$ matched the TSUNAMI-3D result.

• It would be more accurate to use the usual "deterministic" first-order perturbation formula, as does TSUNAMI-3D:

+
$$\Delta \lambda_{1st} = \frac{\left\langle \psi_0^*, \left(\Delta L - \frac{1}{k_0} \Delta F \right) \psi_0 \right\rangle}{\left\langle \psi_0^*, F' \psi_0 \right\rangle}.$$

See Brian Kiedrowski, "Estimating Reactivity Changes from Material Substitutions with Continuous-Energy Monte Carlo," Wednesday morning.

UNCLASSIFIED

Slide 11 of 11

Results: One-Group *k_{eff}* **Test Problem**

- A homogeneous spherical fuel region (radius 6.12745 cm) surrounded by a spherical reflector shell (thickness 3.063725 cm).
- "Exact" derivatives were calculated with direct k_{eff} calculations using data libraries with perturbed cross sections (±10% and ±20%), and fitting the results with a line.
- Results:

		Direct	DEDT Estimata	Difference
		Direct	FERI Estimate	Rel. to Direct
Fuel	$S_{k_{e\!f\!f},\sigma_t}$	$0.75801 \pm 0.040\%$	$0.73178 \pm 0.088\%$	-3.460%
	$S_{k_{e\!f\!f},\sigma_f}$	$0.68296 \pm 0.044\%$	$0.67463 \pm 0.024\%$	-1.219%
	$S_{k_{e\!f\!f},\sigma_c}$	$-0.06416 \pm 0.461\%$	$-0.06507 \pm 0.063\%$	1.417%
	$S_{k_{e\!f\!f},\sigma_s}$	$0.13917 \pm 0.213\%$	$0.12222 \pm 0.516\%$	-12.178%
	S_{k_{eff},σ_t} , sum	$0.75797 \pm 0.068\%$	$0.73178 \pm 0.089\%$	-3.455%
Refl.	$S_{k_{e\!f\!f},\sigma_t}$	$0.10891 \pm 0.275\%$	$0.12381 \pm 0.165\%$	13.676%
	$S_{k_{e\!f\!f},\sigma_c}$	$-0.01825 \pm 1.641\%$	$-0.02137 \pm 0.155\%$	17.076%
	$S_{k_{e\!f\!f},\sigma_s}$	$0.12742 \pm 0.229\%$	$0.14517 \pm 0.150\%$	13.931%
	S_{k_{eff},σ_t} , sum	$0.10917 \pm 0.383\%$	$0.12381 \pm 0.178\%$	13.405%

• The PERT estimate is accurate in the fuel, except for scattering, but not accurate in the reflector.

UNCLASSIFIED

Slide 12 of 11

Results: One-Group *k* **Test Problem**

• Same geometry and materials; fixed source is the fission distribution; fission is treated as capture; quantity of interest is $k = \int dV v \Sigma_f(r) \phi(r)$.

Results:					
			Direct	PERT Estimate	Difference
					Rel. to Direct
	Fuel	S_{k,σ_t}	$0.73216 \pm 0.124\%$	$0.73162 \pm 0.213\%$	-0.381%
		S_{k,σ_f}	$0.67584 \pm 0.134\%$	$0.67561 \pm 0.100\%$	-0.318%
		S_{k,σ_c}	$-0.06498 \pm 1.387\%$	$-0.06518 \pm 0.161\%$	0.312%
		S_{k,σ_s}	$0.12117 \pm 0.744\%$	$0.12119 \pm 1.128\%$	-0.002%
		S_{k,σ_t} , sum	$0.73203 \pm 0.213\%$	$0.73162 \pm 0.209\%$	-0.321%
	Refl.	S_{k,σ_t}	$0.12433 \pm 0.723\%$	$0.12330 \pm 0.412\%$	-0.866%
		S_{k,σ_c}	$-0.02133 \pm 4.439\%$	$-0.02128 \pm 0.354\%$	5.029%
		S_{k,σ_s}	$0.14524 \pm 0.619\%$	$0.14458 \pm 0.379\%$	-0.467%
		S_{k,σ_t} , sum	$0.12391 \pm 1.018\%$	$0.12330 \pm 0.448\%$	-1.358%

• Conclusion: The inability to account for the perturbed fission source distribution leads to inaccurate perturbation estimates of the sensitivity.

UNCLASSIFIED

Slide 13 of 11

