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Introduction 
 
• Many studies have pointed out the inaccuracy of the differential operator Monte Carlo 
perturbation method for keff eigenvalue problems. 
 

Example: Density change in outer 0.1-cm 
shell of 8.741-cm radius HEU sphere: 

 
• The standard implementation of the 
differential operator method (as in MCNP) 
assumes that the fission source distribution is 
unperturbed. 
 

+ This talk discusses the mathematical 
implications of that assumption. 
+ This problem is unrelated to the number 
of Taylor terms retained in the expansion. 

 
• Recently, it has been observed that keff sensitivities were more accurate for capture and 
fission cross sections than for scattering. 
 

+ Conclusion: Perturbations to the scattering cross section affect the fission source 
distribution more than perturbations to the capture cross section do. 
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The keff Eigenvalue Equation 
 
• The one-group keff eigenvalue equation, isotropic scattering: 

).()(1)()()ˆ,()()ˆ,(ˆ rr
k

rrrrr f
eff

st   ΩΩΩ


 

Scalar flux: )ˆ,(ˆ)(
4

ΩΩ rdr 
  

Total cross section: ).()()()( rrrr sfct   
 
• Define )()()( rrrS f  . 
 
• Let the flux be normalized to efff krrdV  )()(  .  
 
• The inhomogeneous equation 

)()()()ˆ,()()ˆ,(ˆ rSrrrrr st   ΩΩΩ


 
has the same solution as the homogeneous equation, and this solution satisfies the normalization. 
 
• These concepts are not specific to any code or solution method. 
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Notation for Perturbation Theory 
 
• The initial, unperturbed configuration is denoted with a subscript 0: 
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eff
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with 
).()( 00,0, rrdVk feff    

 
• The perturbed configuration is denoted with a prime: 
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with 
).()( rrdVk feff     

 
• The perturbation in keff is  

).()()()( 00,0, rrdVrrdVkkk ffeffeffeff     
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The Power Series Solution Method 
 
• The standard power series method of solving the eigenvalue problem with Monte Carlo: 

+ Start with a guess for the fission source distribution S(r). 
+ Simulate the transport process, saving new fission source points and scoring keff for 
information. 
+ Use the new collection of fission source points as S(r) in the next iteration. 
+ Repeat until the fission source converges. 
(+ Aside: How do you know if the fission source converges?  Until recently, you guess, 
using cycle-by-cycle keff.) 
+ Once the fission source converges, continue as before, but collect keff and tallies for 
real. 

 
• This process essentially solves )()ˆ,( rSrL Ω , a fixed-source problem, in each cycle.  
 
• The differential operator method attempts to estimate the effect of the perturbed transport 
operator on keff and tallies in active cycles. 
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Putting It All Together 
 
• warning:  fundamental eigenfunction (fission distribution) 
approximated as unperturbed. 
 
• The differential operator method uses the unperturbed source but the perturbed transport 
operator, estimating the solution to 

)()ˆ,(~
0 rSrL  Ω  

and using it in 
).()()(~)( 00,, rrdVrrdVk ffDOeff     

 
• The accuracy of the differential operator method is affected not only by whether )(0 rS  is a 
good approximation of )(rS  , but also by whether )(~ r  is a good approximation of )(r . 
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Relating to Deterministic Perturbation Methods 
 
• In deterministic perturbation theory, “ignoring the effect of the perturbation on the flux 
distribution” leads from the exact expression for the eigenvalue difference  
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• In the differential operator method, “ignoring the effect of the perturbation on the fission 
source distribution” leads from 

00,0,  ffeffeffeff dVdVkkk    
to the approximation 

.~
00,,  ffDOeff dVdVk    
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Test Problem 
 
• One group, spherical, two regions, fuel (radius 6.12745 cm) surrounded by reflector 
(thickness 3.063725 cm).  Analytic keff,0 = 1.  PARTISN S64 keff,0 = 1.0000128. 
 
• Results for fuel capture and fuel scattering cross-section perturbations (independent): 

 
• keff is much more sensitive to the fuel scattering cross section than to the fuel capture cross 
section, since a 5% change in the former has about half the effect of a –20% change in the latter. 
 
• Although the Σs perturbation is smaller than the Σc perturbation and has a smaller effect on 
keff, the differential operator method is much less accurate at predicting the effect. 
 
• In both cases, the differential operator method very accurately estimates 0,

~
effkk  .   

 

 Σc Pert. (–20%) Σs Pert. (+5%) Calc. Type 
effk  1.0130141 1.0069433 Deterministic 
k~ 1.0132118 1.0060818 Deterministic 

0,effeff kk 
 

0.0130013 0.0069305 Deterministic 

0,
~

effkk   0.0131990 0.0060690 Deterministic 
Error 1.52% –12.43% N/A 

DOeffk ,  0.0131810 ± 0.01% 0.0060493 ± 0.12% Stochastic 
Error 1.38% –12.71% N/A 

 

Exact Δkeff 
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Test Problem Fluxes 
 
• Deterministic fluxes (differences are plotted; the maximum unperturbed flux is  
9.745 × 10–3 cm–2s–1): 

 
• 0  more closely matches   (therefore 0S  more closely matches S ) for the capture cross 
section perturbation than for the scattering cross section perturbation (the difference is flatter).   
• ~ more closely matches  for the capture cross section perturbation than for the scattering 
cross section perturbation. 
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Fig. 1. Fluxes for the capture cross section 
perturbation. 
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Fig. 2. Fluxes for the scattering cross section 
perturbation. 
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Summary and Conclusions 
 
• The differential operator method essentially solves the inhomogeneous transport equation 
with a perturbed transport operator and an unperturbed fission source and uses the resulting flux 

)(~ r  to estimate effk . 
 
• This conclusion is suggested by the consistency between the argument and the numerical 
results, but it is not proven. 
 
• MCNP5 has more trouble estimating effk  due to scattering cross section perturbations than 
capture cross section perturbations because )(~ r  differs more significantly from )(r  when the 
scattering cross section is perturbed, even when the effect on effk  is smaller. 

+ However, in one test problem, the keff sensitivity to S(α,β) matched the TSUNAMI-3D result. 
 
• It would be more accurate to use the usual “deterministic” first-order perturbation formula, 
as does TSUNAMI-3D: 
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See Brian Kiedrowski, “Estimating Reactivity Changes from Material Substitutions with 
Continuous-Energy Monte Carlo,” Wednesday morning. 
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Results: One-Group keff Test Problem 
 
• A homogeneous spherical fuel region (radius 6.12745 cm) surrounded by a spherical 
reflector shell (thickness 3.063725 cm). 
 
• “Exact” derivatives were calculated with direct keff calculations using data libraries with 
perturbed cross sections (±10% and ±20%), and fitting the results with a line. 
 
• Results: 

• The PERT estimate is accurate in the fuel, except for scattering, but not accurate in the 
reflector. 

 

  Direct PERT Estimate Difference 
Rel. to Direct 

Fuel teffkS ,  0.75801 ± 0.040% 0.73178 ± 0.088% –3.460% 
 feffkS ,  0.68296 ± 0.044% 0.67463 ± 0.024% –1.219% 
 ceffkS ,  –0.06416 ± 0.461% –0.06507 ± 0.063% 1.417% 
 seffkS ,  0.13917 ± 0.213% 0.12222 ± 0.516% –12.178% 
 teffkS , , sum 0.75797 ± 0.068% 0.73178 ± 0.089% –3.455% 

Refl. teffkS ,  0.10891 ± 0.275% 0.12381 ± 0.165% 13.676% 
 ceffkS ,  –0.01825 ± 1.641% –0.02137 ± 0.155% 17.076% 
 seffkS ,  0.12742 ± 0.229% 0.14517 ± 0.150% 13.931% 
 teffkS , , sum 0.10917 ± 0.383% 0.12381 ± 0.178% 13.405% 
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Results: One-Group k Test Problem 
 
• Same geometry and materials; fixed source is the fission distribution; fission is treated as 
capture; quantity of interest is )()( rrdVk f   . 
 
• Results: 

 
• Conclusion: The inability to account for the perturbed fission source distribution leads to 
inaccurate perturbation estimates of the sensitivity. 

 

 

  Direct PERT Estimate Difference 
Rel. to Direct 

Fuel tkS ,  0.73216 ± 0.124% 0.73162 ± 0.213% –0.381% 
 fkS ,  0.67584 ± 0.134% 0.67561 ± 0.100% –0.318% 
 ckS ,  –0.06498 ± 1.387% –0.06518 ± 0.161% 0.312% 
 skS ,  0.12117 ± 0.744% 0.12119 ± 1.128% –0.002% 
 tkS , , sum 0.73203 ± 0.213% 0.73162 ± 0.209% –0.321% 

Refl. tkS ,  0.12433 ± 0.723% 0.12330 ± 0.412% –0.866% 
 ckS ,  –0.02133 ± 4.439% –0.02128 ± 0.354% 5.029% 
 skS ,  0.14524 ± 0.619% 0.14458 ± 0.379% –0.467% 
 tkS , , sum 0.12391 ± 1.018% 0.12330 ± 0.448% –1.358% 

 


