Gad Rod Worth Evaluation for Criticality Safety Analysis of the RAJ-II BWR Shipping Package

Tanya Sloma and Peter Vescovi, Westinghouse Electric Company
John Zino, Global Nuclear Fuels

Background: RAJ-II Transport Package

- Type B, Fissile material package (Type B(U)F)
- Currently approved to transport
 - AREVA and GNF BWR fuel bundles
- Revision of Safety Analysis Report
 - WEC entered agreement with GNF to allow shipping of WEC BWR fuel
 - Approval in Europe required additional response to questions regarding current licensed criticality safety evaluation

European Requested Information

- Extent of fuel rearrangement during accident condition
- Use of uniform enrichment to bound actual average lattice enrichment
- Distribution for Gadolinia Oxide neutron absorber

Background: Criticality Safety Evaluations

- Fissile package assessments are performed assuming contents specification provides the maximum k_{eff}, consistent with
 - Fuel bundle design and
 - Transport conditions
- Assumes presence of burnable neutron absorber rods
 - Composed of Urania Oxide-Gadolinia Oxide (Gad)
 - Used to achieve desired core performance
 - By quantity, arrangement, and Gd content variation

Application of Uniform Enrichment

- Simplify contents specification for RAJ-II
 - Revise package assessment to
 - Specify single minimum number of Gad rods
 - Minimize rules for distribution of Gad rods
 - Eliminate dependence on ²³⁵U enrichment

Current Certificate of Compliance

Parameter	Units	Type	Туре	Type	Type
CodeVisio Description	1 - 1				
Gadolinia Requirements	#				
Lattice Average Enrichment	- 60	7 (2 2 + 0/	10.00	10.00 .00	10.00
≤ 5.0 wt % U-235	@ wt%	7 @ 2 wt %	10 @ 2 wt %	12 @ 2 wt %	12 @ 2 wt %
≤ 4.7 wt % U-235	Gd ₂ O ₃	6 @ 2 wt %	8 @ 2 wt %	12 @ 2 wt %	12 @ 2 wt %
≤ 4.6 wt % U-235		6 @ 2 wt %	8 @ 2 wt %	10 @ 2 wt %	10 @ 2 wt %
≤ 4.3 wt % U-235		6 @ 2 wt %	8 @ 2 wt %	9@2 wt %	9 @ 2 wt %
< 4.2 wt % U-235	1 1	6@2 wt %	6 @ 2 wt %	8 @ 2 wt %	8@2 wt %
≤ 4.1 wt % U-235	1 1	4@2 wt%	6@2 wt %	8 @ 2 wt %	8 @ 2 wt %
_ ≤ 3.9 wt % U-235		4@2 wt %	6@2 wt%	6 @ 2 wt %	6@2 wt %
≤ 3.8 wt % U-235		4@2 wt %	4@2 wt%	6@2 wt %	6 @ 2 wt %
≤ 3.7 wt % U-235		2@2 wt%	4@2 wt %	6@2 wt %	6 @ 2 wt %
≤ 3.6 wt % U-235	1 1	2@2 wt%	4@2 wt%	4 @ 2 wt %	4 @ 2 wt %
≤ 3.5 wt % U-235		2 @ 2 wt %	2 @ 2 wt %	4 @ 2 wt %	4@2 wt%
≤ 3.3 wt % U-235	1 1	2@2 wt%	2@2 wt %	2@2 wt %	2@2 wt%
≤ 3.1 wt % U-235		None	2@2 wt %	2@2 wt %	2 @ 2 wt %
≤ 3.0 wt % U-235		None	None	2@2wt%	2@2 wt %
≤ 2.9 wt % U-235		None	None	None	None

Distribution of Neutron Absorbers

- Simplify contents specification for RAJ-II
 - By evaluating burnable absorber contents
 - Relying on current BWR fuel design criteria

Application of Perturbation Theory

- Perturbation theory is useful in studying the relative worth of burnable absorber rod positions
- Absorption characterizing a burnable absorber rod is too strong to allow meaningful estimates of absolute burnable absorber rod worth
- Burnable absorber rods are characterized by relatively weak absorption by using a small quantity of Gadolinia Oxide

Gad Worth Evaluation Methodology

- Sensitivity analysis of burnable absorber contents
 - Determine relative effectiveness of Gad rod as a neutron absorber in BWR lattice
 - Quantified by ¹⁵⁷Gd total reaction
- Implemented by TSUNAMI-3D module in SCALE
 - Executes method for sensitivity and uncertainty analysis based on perturbation theory
- Results in selection of least effective reactivity locations for Gad rods in the BWR lattice
 - Ensuring demonstration of most reactive and realistic contents specification

Gad Rod Worth Evaluation

- Gad rod, or other burnable absorbers, utilized to extend fuel bundle life during power generation
- Neutron absorber location in bundle is significant to reactivity of RAJ-II transport package
- Evaluation process

Assessment of each location

Evaluate selected Gad rod pattern

Ensure most reactive and realistic model

Calculation Tool: TSUNAMI-3D

- Control module of SCALE code package
- Calculates adjoint-based first-order linear perturbation theory sensitivity coefficients with multi-group Monte Carlo methods ³
- General processing sequence

Computes implicit portion of sensitivity coefficient data from cross-section library

Performs Monte
Carlo KENO-V.a
forward and
adjoint criticality
calculation

Executes linear perturbation theory sensitivity and uncertainty calculations

SAMS Sensitivity Coefficients

- Indicates sensitivity of calculated k_{eff} value 2
 - To changes in cross-sections
 - To uncertainty in basic nuclear data
- Coefficient calculations include
 - Implicit effect of resonance self-shielding calculations
 - Explicit effect, k_{eff} sensitivity to a particular groupwise cross-section data component
- Gad worth determined by sensitivity coefficient and Monte Carlo uncertainty integrated over energy and region for ¹⁵⁷Gd

Gad Worth Evaluation Model Inputs

- Single BWR fuel assembly
 - Exact rod patterns modeled (i.e., part length rods)
- Materials
 - All rods enriched with 5wt% ²³⁵U at theoretical density
 - Doped with 0.1% Gd₂O₃
 - To allow calculation of relative sensitivity coefficient without large perturbation of the flux in the fuel lattice
- Excluded Gad rod locations
 - Part length rods, periphery rods, and corner rods

Gad Worth Evaluation Models

- Transport condition representative models
 - Single Package represented by single fuel bundle
 - One BWR fuel bundle flooded, reflected by 20 cm of full density water
 - Multiple RAJ-II packages represented by single fuel bundle with mirrored boundaries
 - One BWR fuel bundle flooded surrounded by 0.1 cm of stainless steel, in an infinite array
- Each vendor's BWR fuel designs independently evaluated, hence specific optimized Gad rod patterns

SCALE Model Input Specifications

- Cross-section Parameters
 - Library: 238 group ENDF/B-V
 - Processor: NITAWLST
- Individual unit cells modeled for each fuel pin cell
 - Each rods contribution individually evaluated

Gad Rod Relative Worth Results

¹⁵⁷Gd sensitivity coefficients mapped in bundle configurations

Red represents least worth

Yellow represents most worth

					_					
20	19	18	17	16		15	14	13	12	11
30	29	28	27	26		25	24	23	22	21
	-2.29E-03	-1.94E-03	-2.02E-03	-2.58E-03		-2.64E-03	-1.96E-03	-1.92E-03	-2.24E-03	
40	39	38	37	36		35	34	33	32	31
	-1.89E-03	-1.66E-03	-1.85E-03	-2.80E-03		-2.77E-03	-1.89E-03	-1.61E-03	-1.94E-03	
50	49	48	47	46		45	44	43	42	41
	-1.95E-03	-1.84E-03	-2.73E-03				-2.78E-03	-1.82E-03	-1.97E-03	
60	59	58	57	56		55	54	53	52	51
	-2.50E-03	-2.71E-03					-	-2.73E-03	-2.64E-03	
70	69	68	67	66		65	64	63	62	61
	-2.53E-03	-2.69E-03	-				-	-2.78E-03	-2.62E-03	-
80	79	78	77	76		75	74	73	72	71
	-1.96E-03	-1.83E-03	-2.71E-03				-2.72E-03	-1.77E-03	-1.94E-03	
90	89	88	87	86		85	84	83	82	81
	-1 88F-03	-1.60F-03	-1.84F-03	-2.70E-03		-2 83F-03	-1.80E-03	-1.60F-03	-1 89F-03	
100	99	98	97	96		95	94	93	92	91
	0.005.00	4 005 00	4 005 00	0.545.00		0.575.00	4 005 00	4 005 00	0.005.00	
110				-2.51E-03			-1.98E-03			
110	109	108	107	106		105	104	103	102	101

20	19	18	17	16	15	14	13	12	11
30	29	28	27	26	25	24	23	22	21
	-1.99E-03	-1.71E-03	-1.74E-03	-1.80E-03	-1.90E-03	-1.86E-03	-1.84E-03	-2.03E-03	
40	39	38	37	36	35	34	33	32	31
	-1.73E-03	-1.46E-03	-1.57E-03	-2.07E-03	-2.74E-03	-2.54E-03	-1.79E-03	-1.81E-03	
50	49	48	47	46	45	44	43	42	41
	-1.72E-03	-1.62E-03	-2.34E-03				-2.52E-03	-1.85E-03	
60	59	58	57	56	55	54	53	52	51
	-1.80E-03	-2.17E-03					-2.70E-03	-1.87E-03	
70	69	68	67	66	65	64	63	62	61
	-1.88E-03	-2.80E-03					-2.17E-03	-1.87E-03	
80	79	78	77	76	75	74	73	72	71
	-1.86E-03	-2.58E-03				-2.37E-03	-1.64E-03	-1.74E-03	
90	89	88	87	86	85	84	83	82	81
	-1.78E-03	-1.80E-03	-2.54E-03	-2.67E-03	-2.19E-03	-1.62E-03	-1.49E-03	-1.71E-03	
100	99	98	97	96	95	94	93	92	91
	-2.01E-03	-1.74E-03	-1.83E-03	-1.93E-03	-1.82E-03	-1.70E-03	-1.74E-03	-1.97E-03	
110	109	108	107	106	105	104	103	102	101

GNF

Gad Rod Pattern Selection Criteria

- Guidance to simplify contents specification for RAJ-II BWR package
 - 1. Minimum eight (8) Gad rods
 - 2. Symmetric about the major diagonal
 - Off-diagonal "pairs" selected by least worth average between pairs
 - 3. At least three (3) quadrants contain Gad rods
 - Varies selection of worth locations

Gad Rod Pattern Selection Example

- Identify least worth locations (including pairs)
- Calculate average worth among pairs
- Select pattern

20	19	18	17	16	15	14	13	12	11
			-			-	-	-	-
30	29	28	27	26	25	24	23	22	21
			.		<u>_</u>				
- 40		-1 04F-03					-1 92F-03		
40	39	38	37	36	35	34	33	32	31
-	-1.89E-0	-1.66E-03	·1.85E-03	-2.80E-03	-2.77E-0	-1.89E-0	-1.61E-03	-1.94E-03	-
50	49	48	47	46	45	44	43	42	41
-	-1.95E-0	-1.84E-03			<u>-</u>		-1.82E-03		
60	59	58	57	56	55	54	53	52	51
	-2 50F-03	-2.71E-03	_			_	-2 73F-03	-2.64E-03	_
	2.000 00	2.712 00					2.700 00	2.042 00	
70	69	68	67	66	65	64	63	62	61
-	-2.53E-03	-2 69F-03	-				_2 78F_03	-2.62E-03	-
80	79	78	77	76	75	74	73	72	71
-	-1.96E-0	-1.83E-03	-2.71E-03		-	-2.72E-0	-1.77E-03	-1.94E-03	-
90	89	88	87	86	85	84	83	82	81
	-1.88E-0	1 60E 02	1 94E 02	-2.70E-03	-2.83E-0	1 905 02	-1.60E-03	1 905 03	
100	99	98	97	96	95	94	93	92	91
	33	30	3,	30	33	34	33	32	
	-2.30E-03	-1.86E-03	-1.93E-03	-2.51E-03	-2.57E-03	-1.98E-03	-1.92E-03	-2.23E-03	
110	109	108	107	106	105	104	103	102	101
<u> </u>	-	-	-	-	-	-	-	-	-

Final Resolution

- Validation of code method by direct perturbation of ¹⁵⁷Gd atom density and hand calculation of sensitivity coefficient
- Verification of selected Gad rod arrangement through k_{eff} comparison of varied pattern choices
- Resultant Gad rod arrangements utilized in next level fuel contents and package analyses

Final Resolution: Benefits

- Gad rod worth evaluation per fuel assembly lends a more realistic analysis that leads to
 - Less restrictive contents specification for RAJ-II
 - Minimization of any potential, unnecessary restrictions imposed on the fuel bundle design
 - Increased safety margin for NCS analyses
- TSUNAMI-3D facilitates more thorough understanding of lattice physics and more efficient evaluation of contents

Supplemental Information

- Supplement A: References
- Supplement B: Validation
- Supplement C: Verification

Supplement A: References

- "Safety Analysis Report for the Model Number RAJII Package," SA/9309/B(U)F-96, Docket Number 71-9309, Rev. 6, Global Nuclear Fuel-Americas, Wilmington, (2006).
- "SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation," NUREG/CR-0200, ORNL/TM-2005/39, Version 5.1, Vols. I–III, CCC-732, Radiation Safety Information Computational Center (2006).
- 3. B. T. REARDEN, "Perturbation Theory Eigenvalue Sensitivity Analysis with Monte Carlo Techniques," Nuclear Science and Engineering, 146, 367-382 (2004).

Supplement B: Validation

- Direct perturbation
 - Vary ¹⁵⁷Gd atom density ±10%
 - Scaled to linear comparison to avoid asymmetric result
 - Calculate sensitivity coefficient

$$S_{k,\alpha} = \frac{k_{\alpha^{+x\%}} - k_{\alpha^{-x\%}}}{k_{no \, min \, al}} \times \frac{100(\%)}{2x(\%)}$$

Compare to TSUNAMI-3D results

Method	¹⁵⁷ Gd Sensitivity Coefficient
TSUNAMI-3D	-0.18828
Hand Calculation	-0.18815

Supplement C: Verification

- Direct perturbation of varying Gad rod patterns
 - Patterns based on single and multi-assembly models
 - Validation of pattern selection criteria

Pattern 1	Pattern 2	Pattern 3	Pattern 4		
$k_{eff} = 0.61133$	$k_{eff} = 0.61362$	$k_{eff} = 0.62131$	$k_{eff} = 0.62182$		

