SCALE TSUNAMI Analysis of Critical Experiments for Validation of ²³³U Systems Don Mueller and Brad Rearden # ²³³U Downblending at ORNL - ISOTEK, LLC designing operations to downblend materials stored at Radiochemical Development Facility (RDF) - Highly-enriched ²³³U downblended with ²³⁸U - Aqueous process will be used - K. R. ELAM, L. L. GILPIN, and B. W. STARNES, "Integrating Criticality Safety in Design of ²³³U Downblending Process," *Trans. Am. Nucl.Soc.*, **100**, 343–344 (2009). # SCALE TSUNAMI Analysis - ORNL staff used the SCALE TSUNAMI tools to provide a demonstration evaluation of critical experiments considered for use in validation of current and anticipated operations involving ²³³U at the RDF. - Reported in ORNL/TM-2008/196 issued in January 2009. - Today we present the analysis of two representative safety analysis models provided by RDF staff and one model that was not considered in the final report. OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY ORNL/TM-2008/196 Application of the SCALE TSUNAMI Tools for the Validation of Criticality Safety Calculations Involving ²³³U January 2009 Prepared by D. E. Mueller B. T. Rearden D. F. Hollenbach # Application Models #### Application 1 - 12.2 cm radius sphere of 220 g U per liter uranyl nitrate solution - U is 100 wt % ²³³U - Reflector 0.25 cm thick Type 304 stainless steel tank and 2 cm of water. - EALF is 0.282 eV - k_{eff} calculated for this system is 1.0028 \pm 0.0002. #### Application 3 - 53.0 cm radius sphere of 600 g U per liter uranyl nitrate solution, 80° C - U is 3 wt % 233 U, 0.2 wt % 235 U, and 96.8 wt % 238 U. - Reflector 0.25 cm thick Type 304 stainless steel tank and 2 cm of water - EALF is 0.0631 eV - k_{eff} calculated for this system is 0.9690 \pm 0.0002. - A variant of Application 1 considered in preliminary studies - Infinite medium of 220 g U per liter uranyl nitrate solution with 9.5 M excess acid - U is 98 wt % ²³³U, 1 wt % ²³⁵U, and 1 wt% ²³⁸U - EALF is 0.446 eV - k_{eff} calculated for this system is 2.055. # **Analysis Methods** - SCALE 5.1 TSUNAMI tools TSUNAMI-3D, TSUNAMI-1D were used to generate k_{eff} sensitivity data for the applications and 672 critical experiments from 101 ICSBEP evaluations - 232 ²³³U configurations - 28 mixed U/Pu configurations - 153 high uranium enrichment configurations - 255 low uranium enrichment configurations - TSUNAMI-IP used to compare each application with each critical experiment. - Example upper subcritical limits (USLs) were generated for Application 1 based on trending of the TSUNAMI similarity parameters. ## **TSUNAMI** Validation - Computational biases are primarily caused by errors in the cross-section data - Errors are bounded by uncertainties on cross sections quantified with cross-sectioncovariance data - Quantification of uncertainty in k_{eff} due covariance data should bound computational bias # $230^{233} U$ Systems from 2009 ICSBEP Handbook Distribution k_{eff} C/E and Experimental Uncertainty ### **Covariance Data – ²³³U Fission** # 233 U Systems from 2009 ICSBEP Handbook Distribution k_{eff} C/E and Cross-Section Uncertainty #### Sensitivity of k_{eff} to ¹H elastic scattering ### Sensitivity of k_{eff} to ^{233}U fission # Uncertainty in Applications due to Covariance Data | System | Standard
deviation
(%) | Top six contributors and standard deviation (%) | | | |---|------------------------------|--|-------|--| | Application 1 | 0.937 | $^{233}\mathrm{U}~\chi$ to $^{233}\mathrm{U}~\chi$ | 0.819 | | | | | ¹ H elastic to ¹ H elastic | 0.320 | | | | | ¹⁶ O elastic to ¹⁶ O elastic | 0.194 | | | | | ²³³ U n,γ to ²³³ U n,γ | 0.174 | | | | | ²³³ U nubar to ²³³ U nubar | 0.145 | | | | | ²³³ U fission to ²³³ U fission | 0.117 | | | Application 3 | 0.515 | ¹⁴ N n,p to ¹⁴ N n,p | 0.346 | | | | | ²³⁸ U n,γ to ²³⁸ U n,γ | 0.233 | | | | | ²³³ U fission to ²³³ U fission | 0.173 | | | | | ¹ H n,γ to ¹ H n,γ | 0.145 | | | | | 233 U χ to 233 U χ | 0.136 | | | | | ²³³ U nubar to ²³³ U nubar | 0.135 | | | 220 g U per
liter with
9.5 M excess
acid | 0.293 | ²³³ U n,γ to ²³³ U n,γ | 0.192 | | | | | ²³³ U nubar to ²³³ U nubar | 0.143 | | | | | ¹⁴ N n,p to ¹⁴ N n,p | 0.108 | | | | | ²³³ U fission to ²³³ U fission | 0.081 | | | | | $^{16}{\rm O}$ n, α to $^{16}{\rm O}$ n, α | 0.070 | | | | | 233 U χ to 233 U χ | 0.062 | | # Correlation Coefficient (c_k) (a.k.a. representativity factor) • Quantifies degree of shared variance in k_{eff} between design application and benchmark experiment. $$c_k = \frac{\sigma_{ae}^2}{\sigma_a \sigma_e} \qquad \begin{array}{c} \text{Covariance between } \\ \text{Experiment (e) and Application (a)} \\ \text{due to all nuclides and reactions} \\ \text{Standard deviations for} \\ \text{Application (a) and Experiment (e)} \\ \text{due to all nuclides and reactions} \\ \end{array}$$ # Summary of Similarity Results • Analysis used c_r , a reduced version of c_k that excludes fission spectra (χ) data | | Similarity | Application | | | |------------------------|------------|--|-----|---| | Similarity index range | | 1 | 3 | 220 g U per
liter with
9.5 M excess
acid | | | | Number of experiments in each category | | | | $c_{r} < 0.1$ | Low | 43 | 54 | 367 | | $0.1 \le c_r < 0.2$ | Low | 80 | 124 | 15 | | $0.2 \le c_r < 0.3$ | Low | 136 | 141 | 89 | | $0.3 \le c_r < 0.4$ | Low | 140 | 176 | 14 | | $0.4 \le c_r < 0.5$ | Low | 63 | 79 | 25 | | $0.5 \le c_r < 0.6$ | Low | 30 | 68 | 101 | | $0.6 \le c_r < 0.7$ | Low | 14 | 30 | 50 | | $0.7 \le c_r < 0.8$ | Low | 7 | 0 | 10 | | $0.8 \le c_r < 0.9$ | Marginal | 17 | 0 | 0 | | $0.9 \le c_r < 0.95$ | Acceptable | 60 | 0 | 0 | | $0.95 \le c_r < 1.0$ | High | 82 | 0 | 0 | # Comments on Similarity - 82 233U thermal solutions provided excellent match to Application 1 in terms of common sources of uncertainty - No single experiment was similar to Application 3 due to mixture of ²³³U and depleted U - Could benefit from advanced Generalized Linear Least Squares analysis (TSURFER) to combine bias from different types of experiments – ²³³U and LEU solutions - No single experiment was similar to the infinite model with $k_{\text{eff}} > 2.0$ - Similar materials as available experiments - Simple, but non-realistic geometry leads to elimination of leakage and very different sensitivities - Realism must be considered ## **USLSTATS** Trend for Application 1 Computational bias, $\beta = 1.0 \% \Delta k/k$ Uncertainty in the bias, $\Delta \beta = 1.5\% \Delta k/k$ USL1 (disallowing positive bias) = 0.965 # Addressing Validation Gaps - No critical experiments were identified that are adequately similar to Application 3 - Locate additional experiments similar to application - Modify safety model to not take credit for certain materials – Could ¹⁴N be omitted as conservative approximation? - Quantification of additional margin with uncertainty analysis using uncertainties due to cross-section covariance data - Additional means of bias and bias uncertainty assessment using generalized linear least square techniques are available in the SCALE 6 code TSURFER. - See ORNL/TM-2008/196 for example TSURFER calculations. ## Questions? Brad Rearden reardenb@ornl.gov Don Mueller muellerde@ornl.gov