Calculated Critical Masses of ^{242m}Am for Unreflected Spherical Homogeneous Water Moderated Systems

> Norman L. Pruvost Donald G. Shirk Charles T. Rombough CTR Technical Services, Inc. Drew E. Kornreich Los Alamos National Laboratory

7/10/2010

Road Map

What is ^{242m}Am?
Method of Calculation using MCNP
Critical Mass versus Nuclide Density
Comparison with an Sn Method
Conclusions

What is ^{242m}Am?

^{242m}Am is one of the actinides studied in ANS 8.15 "Nuclear Criticality Control of Selected Actinide Nuclides"
Very large thermal fission cross section
Minimum critical mass much smaller than ²³³U, ²³⁵U, or ²³⁹Pu
Present in spent fuel in small quantities

Modeling Assumptions

Homogeneous Metal-Water Mixture
Spherical Geometry
Unreflected (bare)
From Limiting Critical Density to Pure Metal

MCNP Calculation Method

MCNP 5, Version 1.40 Continuous Energy Cross Sections ENDF/B-VI.8 Skip first 100 cycles 1000 active cycles with 40,000 neutrons per cycle Each data point based on 40 million histories

MCNP Calculation Method

Each critical radius determined from six runs (k_{eff} less than 1.00 for 3 runs and k_{eff} greater than 1.00 for 3 runs)
Linear least squares fit to determine radius at which k_{eff} = 1.00
A total of 125 critical radii were determined

²⁴²Am Critical Density Study

K_{eff}

Critical Mass (g)

MCNP Results for ^{242m}Am

- Limiting critical density is 0.00059 g/cc (²³⁵U LCD is ~ 0.012 g/cc)
- Bare minimum critical mass is 41.9 grams (²³⁵U bare min. critical mass is ~ 1300 grams)
- Bare critical mass for the pure metal is 9.08 kilograms (²³⁵U bare metal critical mass is ~ 45 kilograms)
- Discharged fuel contains ~ 50 grams/yr/reactor or 5 kg/yr in U.S.

Comparison to PARTISN

 There are multiple paths to the goal – all with pros and cons

 However, all paths provide an estimate of a critical mass

MCNP vs. PARTISN

The Difficulty with ^{242m}Am

The "big 3" (²³⁵U, ²³⁹Pu, ²³³U) are well supported with experimental data
 The selected actinides covered by ANS-8.15 such as ^{242m}Am have little to no experimental data, other than that used to generate cross section data

The ^{242m}Am fission cross section

Am-242m Metal-Water Mixtures as Calculated with Partisn

- There is a discernable difference between results using ENDF/B-VI.8 and ENDF/B-VII.0
- Partisn Model
 - Bare spherical geometry
 - S16
 - 69-group structure
 - 100 fine mesh intervals
 - Critical radius search

MCNP5/Partisn Comparison at Estimated Minimum Critical Mass

- Partisn uniformly yields smaller estimated critical masses than MCNP5
- Average relative error between Partisn and MCNP5
 - ENDF/B-VI.8 ~ 0.13%
 - ENDF/B-VII.0 \sim 0.74%

MCNP5-Partisn Comparison for Estimated Metal Critical Mass

 Partisn produces slightly smaller estimated critical masses relative to MCNP5
 ENDF/B-VI.8 produces significantly smaller metal critical masses relative to ENDF/B-VII.0 calculations

Current Revision to Standard ANS-8.15

- Each selected nuclide covered by ANS-8.15 is evaluated and judged independent of other nuclides
- Judgment is required to set the appropriate subcritical limits for these selected nuclides:
 - Subcritical limits are established based on judgment relative to calculated results
 - Subcritical limits are generally NOT established based on experimental data *because* the experimental data do not exist
- The unreflected subcritical limit for ^{242m}Am in metalwater mixtures can be conservatively set to 21 grams (50% of the minimum calculated value)

Conclusions

- MCNP can be used to precisely calculate the critical mass of a highly fissionable nuclide for the complete range of metal-water mixtures
- MCNP and an Sn model (PARTISN) give similar results when using the same evaluated cross section data
- PARTISN consistently gives slightly smaller critical masses than MCNP (group x-sections vs. continuous energy, different method, etc.)

Audience Participation

Thank you for your attention
Comments?
Questions?

