

CAAS Problems

- Criticality accident alarm systems are difficult problems because they consist of
 - Criticality calculation
 - Deep penetration shielding calculation
 - May require "answer everywhere"

• Past approaches include

- Point source, point-kernel, one-dimensional
- Build-up factors
- Three-dimensional discrete ordinates
- Very long 3-D Monte Carlo

COAK RIDCE

CADIS Methodology in MAVRIC							
 Nearly automatic – user supplies only Mesh grid (coarse) for the discrete ordinates calculations Adjoint source, which corresponds to the tally to optimize 							
	Define the adjoint source	$q^+(\vec{r},E) = \sigma_d(\vec{r},E)$					
	Solve for the adjoint flux	$\phi^+(\vec{r},E)$					
	Estimate detector response	$c = \iint q(\vec{r}, E) \phi^+(\vec{r}, E) d\vec{r} dE$					
	Construct weight windows	$\overline{w}(\vec{r},E) = \frac{c}{\phi^+(\vec{r},E)}$					
	Construct biased source	$\hat{q}(\vec{r},E) = \frac{1}{c}q(\vec{r},E)\phi^{+}(\vec{r},E)$					
12 Managed by UT-Battelle for the U.S. Department of Energy							

Variance Reduction in MAVRIC Three calculations: 4. Upper level detectors B. Lower level detectors C. Mesh tally in and around west assembly bay Optimize both the neutron and photon dose calculations Requires FW-CADIS

A. Upper Level Detectors								
Using FW-CADIS in MAVRIC - 17 minute forward DO calculation with Denovo								
- 20 minute adjoint DO calculation with Denovo								
 725 IMPLIE TOLWARD WORTE CALLO CALCULATION WITH MONACO Using mesh-based weight windows 								
Using mesh-based biased source								
	Neutron		Photon		Total		_	
	Value	Rel.	Value	Rel.	Value	Rel.		
Detector	(rem)	Unc.	(rem)	Unc.	(rem)	Unc.	_	
south	4409	0.7%	664.5	1.0%	5073	0.6%	_	
center	3785	0.7%	565.4	1.1%	4350	0.6%		
north	3313	0.8%	476.9	1.1%	3790	0.7%		
							_	
FOM ratio: ~55000			FOM rati	<mark>o: ~8500</mark>				
26 Managed by UT-Battelle for the U.S. Department of Energy					_		CAK RIDCE	

B. Lower Level Detectors									
Using FW-CADIS in MAVRIC									
 – 20 minute forward DO calculation with Denovo 									
-20 minute adjoint DO calculation with Denovo									
 — 1440 minute forward Monte Carlo calculation with Monaco 									
Using mesh-based weight windows									
Using mesh-based biased source									
	Neu	itron	Photon		Total		_		
	Value	Rel.	Value	Rel.	Value	Rel.			
Detector	(rem)	Unc.	(rem)	Unc.	(rem)	Unc.			
west	5.67	1.5%	0.489	4.6%	6.15	1.4%			
center	4.48	1.6%	0.379	4.9%	4.86	1.6%			
east	3.74	2.1%	0.289	2.9%	4.03	2.0%			
FOM ratio: ~100000 FOM ratio: ~9000							_		
28 Managed by UT-Battelle for the U.S. Department of Ener							CAK CARDCE Prime Minor		

- Future Work for CAAS in SCALE 6.2 and beyond
 - Warehouse problems many fissionable regions
 - Comparisons to measured doses/dose rates

37 Managed by UT-Battelle for the U.S. Department of Energy

