

Criticality Safety Design Challenges at the MOX Fuel Fabrication Facility

Presented at the American Nuclear Society: 2010 Annual Meeting Nuclear Science and Technology: The Right Fit. The Right Time.

> San Diego CA June 15, 2010

Michael J. Shea, MOX Criticality Safety

mshea@moxproject.com

Shaw AREVA MOX Services, LLC P.O. Box 7097, Aiken, SC 29804-7097

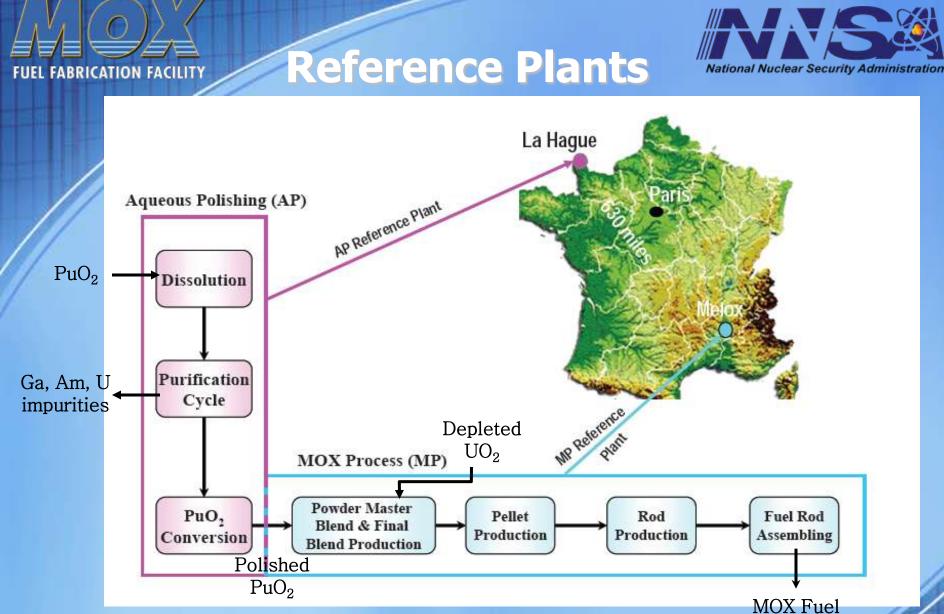
Overview

- What is the MOX Project?
- French Reference Plants
- NCS Challenges in Design Phase
- NQA-1 Suppliers for IROFS Components
- Maintaining Independence
- Qualified NCS Staff
- Conclusion

What is the MOX Project?

• Primary Mission:

Nuclear Non-Proliferation


- Convert 34 metric tons of surplus weaponsgrade plutonium to mixed oxide (MOX) fuel for use in U.S. commercial power reactors
- Once irradiated, plutonium will meet the spent fuel standard – making it inaccessible and unattractive for use in weapons
- Regulated by the United States Nuclear Regulatory Commission (NRC), owned by the Department of Energy (DOE)

What is the MOX Project?

- Impact
 - Total lifetime cost \$4.8 billion plus \$200-300 million/year to operate
 - Removes multiple warheads from the nuclear arsenal
 - Eliminates \$500 million/year in security costs
 - Provides clean, carbon free energy that offsets over \$21 billion in imported oil costs

MOX Safety Fuels the Future

Assemblies

NCS Challenges Design Phase

- French NCS Control Philosophy Melox (MP/Dry) & La Hague (AP/Wet)
- Americanization of French NCSEs
- Construction Authorization Report (CAR)
- License Application (LA)
- Integrated Safety Analysis Summary (ISAS)

NCS Challenges Design Phase

- NRC Regulatory Environment
- IROFS (Items Relied On For Safety)
- Computer Logic/Code Validation Normal vs. Safety PLCs (NPLC/SPLC)

NCS Challenges Design Phase

- Mechanical Design Group (MDG)
 - Design Based Documentation
- Procurement Design Group (PDG)
 IROFS or Commercial Grade Dedication
- Software Design Group (SDG)
 - Logic Design vs. Human Interface
- Laboratory Design Group (LDG)
 - Sampling (NON-IROFS Equipment)

NQA-1 Suppliers IROFS Components

- Limited IROFS Component Suppliers
- Commercial Grade Dedication (CGD)
- Vendor NCRs (Non-Conformance Reports)
- Handling of Critical Components
- Verifying Vendor Quality Assurance
- Quality Control Requirements

Items Relied On For Safety

IROFS

Postulated credible high consequence events (e.g., criticality) are made <u>highly unlikely</u> based on the application of IROFS features:

- Application of the single failure criteria or double contingency
- Application of 10 CFR 50 Appendix B and NQA-1 quality assurance requirements
- Application of Industry Codes and Standards
- Management Measures, including surveillance of IROFS (i.e., failure detection and repair, or process shutdown capability)

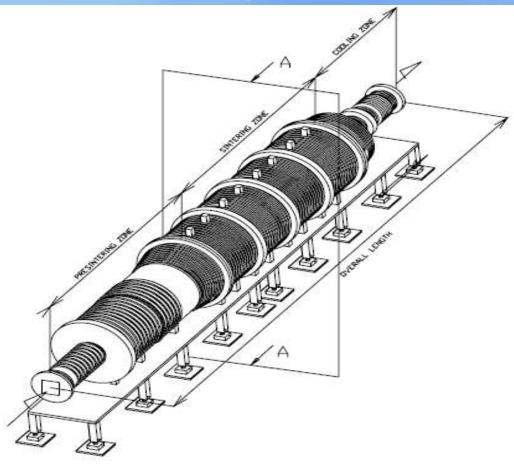
Safe Geometry Annular Tank

Annular Tank Spacing

Annular Tank Top View

Safe Geometry Slab Tank

Slab Tank Top View



Sintering Furnace

Criticality Safety of Furnace Mass Control

- Configuration Control of the Sintering Furnace design limits the number of boats (pellet containers) that can physically be present in the furnace.
- Mass is controlled per boat and the number of boats in the furnace is limited providing overall mass control.

Criticality Safety of Furnace Moderation Control

- Safety functions limit water equivalent moderation inside the furnace to only a humid gas mixture (argon-hydrogen).
- Passive design features and engineered controls labeled as Items Relied Upon For Safety (IROFS) are present to prevent the introduction of water equivalent moderation beyond humidity saturated process gas.
- The supporting criticality calculations use a bounding moisture value of 5 wt % water inside the pellets.

Maintaining Independence

- Design Change Process
 - Engineering Change Requests (ECRs)
- Procedural Development

 NCS Procedure Review
- Limited Conditions of Operations (LCO)
 Operating Limits Manual
- Programmatic Procedures
 - Moderation Control Program
- Training
 - NCS Review of Lesson Plans

Attracting Qualified NCS Staff

- French & United States Contractual Support
- Qualified Nuclear Criticality Safety Engineers
 - NRC Regulator Experience
 - Fuel Fabrication Experience
 - Special Nuclear Materials, e.g., Plutonium
- State of the Art Training Facility (w/ Gym)
- NCS Technicians
- Operational Support
- Gateway Outreach Programs

Conclusion

- MOX Services Continues to Meet the Challenge
 - Managing Design Change Process
 - Procurement of IROFS Equipment
 - Attracting Qualified NCS Personnel
- Approaching Cold Start-Up
 - Operational Limits Manual
 - Procedural Development
- Preparing for the Nuclear Renaissance
 - Non-Proliferation & Energy Independence

Michael Shea, MOX Criticality Safety mshea@moxproject.com MOX Safety Fuels the Future