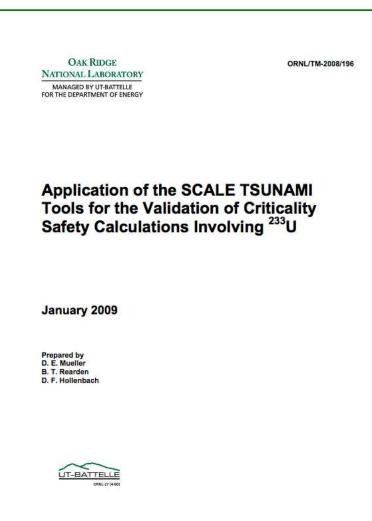
Bias Assessment of ²³³U Systems Using SCALE TSURFER Brad Rearden **SCALE** Project Leader


²³³U Downblending at ORNL

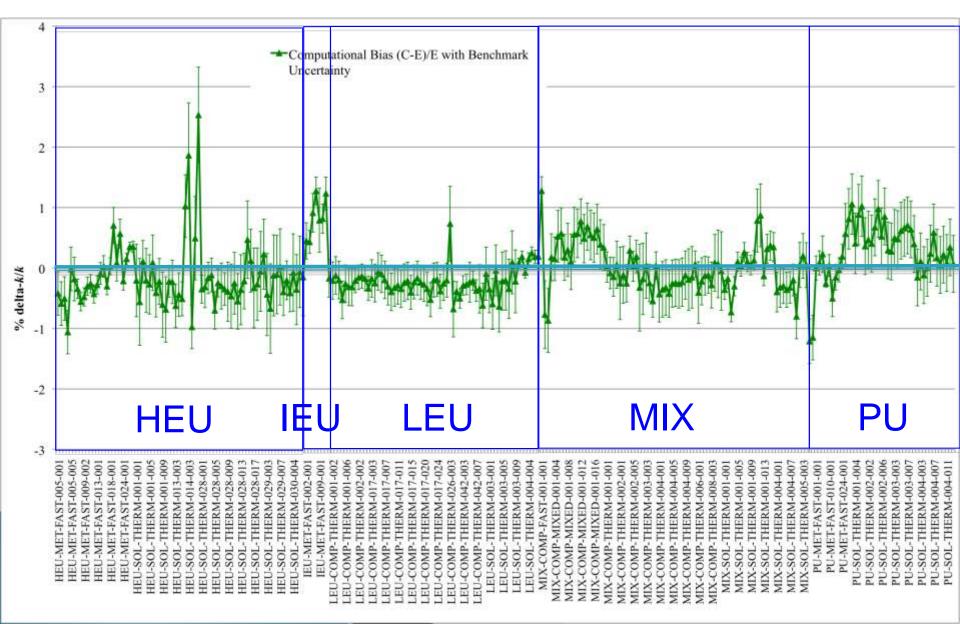
- Operations being designed to downblend materials stored at Radiochemical Development Facility (RDF)
 - Highly–enriched ²³³U downblended with ²³⁸U
- Aqueous process will be used
- K. R. ELAM, L. L. GILPIN, and B. W. STARNES, "Integrating Criticality Safety in Design of ²³³U Downblending Process," *Trans. Am. Nucl.Soc.*, 100, 343–344 (2009).

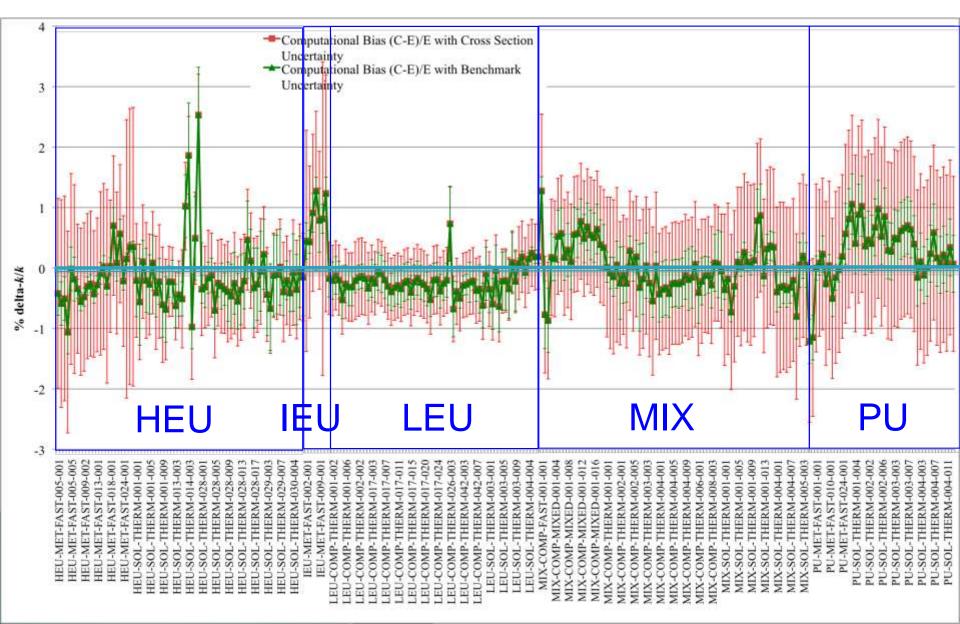
SCALE TSUNAMI Analysis

- ORNL staff used the SCALE TSUNAMI tools to provide a demonstration evaluation of critical experiments considered for use in validation of current and anticipated operations involving ²³³U at the RDF.
- Reported in ORNL/TM-2008/196 issued in January 2009.
- Similarity assessment and c_k analysis presented at ANS in Winter 2009.
- Today we present the TSURFER bias assessment of two representative safety analysis models provided by RDF staff.

SCALE Overview 3

Computational Biases and Their Bounds


- Premise of SCALE/TSUNAMI validation concept for criticality safety applications
 - Computational biases are primarily caused by errors in cross-section data
 - Errors are bounded by cross-section uncertainties represented in covariance data
- SCALE provides sensitivity analysis tools to accurately and conveniently produce the sensitivity of k_{eff} and reactivity responses using explicit 3D Monte Carlo models
- SCALE sensitivity data are distributed through the ICSBEP
- Comprehensive covariance library distributed with SCALE


275 Benchmark Experiments

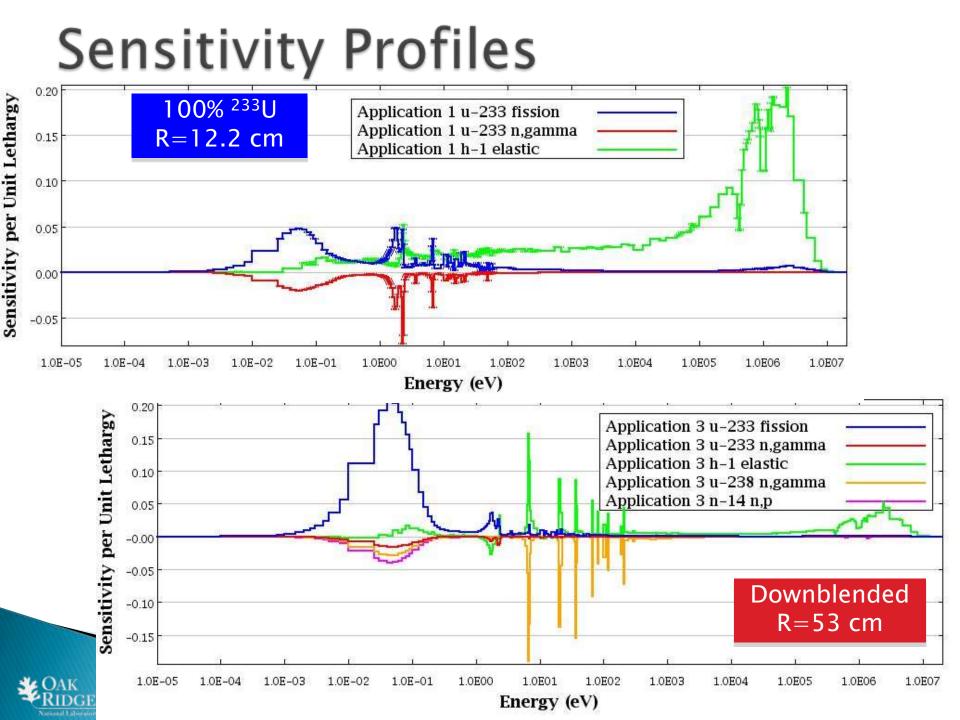
SCALE 6 ENDF/B-VII.0

275 Benchmark Experiments

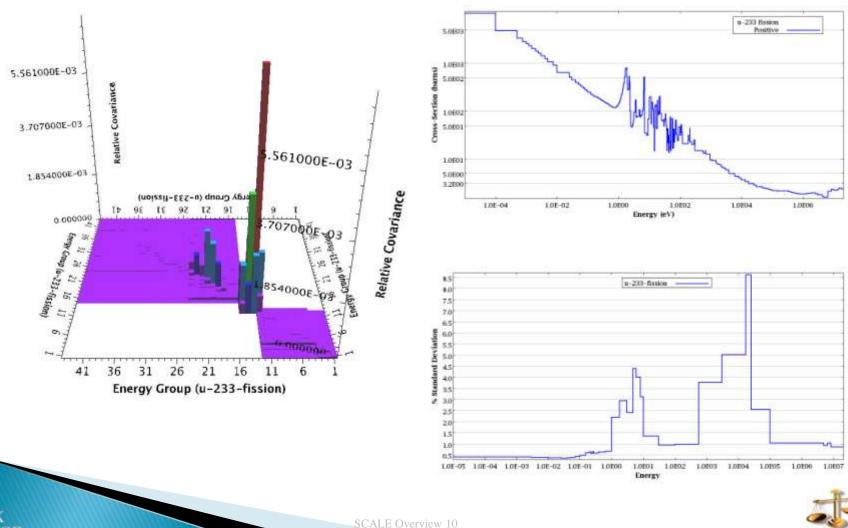
SCALE 6 ENDF/B-VII.0

Generalized Linear Least Squares Approach to Bias and Bias Uncertainty Quantification

- <u>Tool for <u>S</u>/<u>U</u> analysis of <u>Response</u> <u>Functionals</u> using <u>Experimental</u> <u>Results</u></u>
 - Biases are observed as differences between benchmark and calculated k_{eff} values.
 - Benchmark values have uncertainties, some of which are correlated between different systems.
 - Calculated values have uncertainties, primarily due to uncertainties in the cross sections. These are correlated between systems that use the same cross sections.
 - Taking into account the uncertainties and correlations, a consistent set of of data can be formed that eliminates biases for the benchmarks, within a known uncertainty.
 - Where the cross sections and covariance data are modified, the modifications can be used to project biases from the benchmarks to a bias and bias uncertainty for targeted application systems.


²³³U Application Models

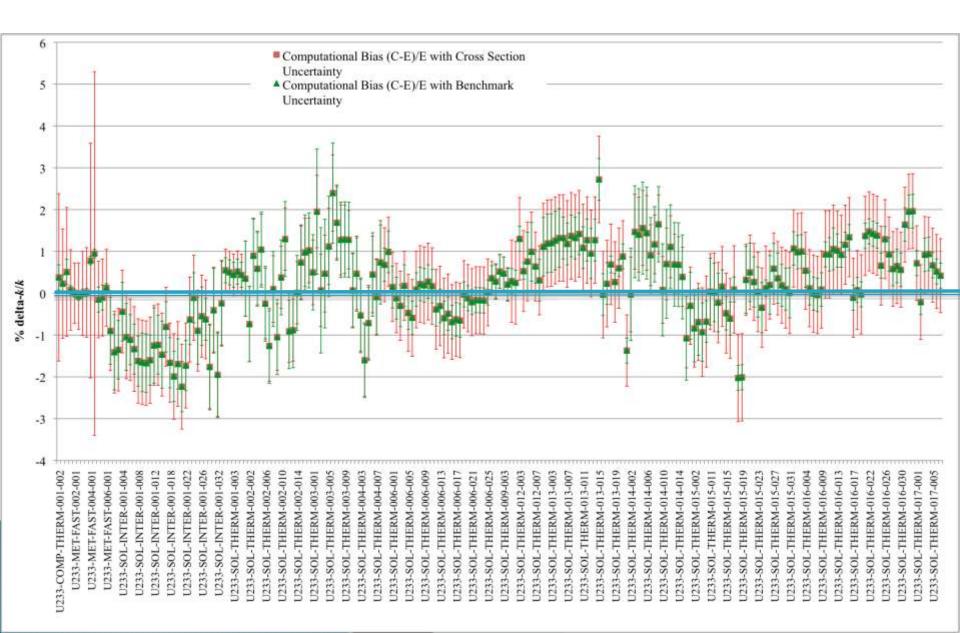
Application 1


- 12.2 cm radius sphere of 220 g U per liter uranyl nitrate solution
- U is 100 wt % ²³³U
- Reflector 0.25 cm thick Type 304 stainless steel tank and 2 cm of water.
- EALF is 0.282 eV
- k_{eff} calculated for this system is 1.0028 ± 0.0002.
- \circ 82 experiments with $c_k \ge 0.95$
- Application 3
 - 53.0 cm radius sphere of 600 g U per liter uranyl nitrate solution, 80° C
 - $^\circ\,$ U is 3 wt % 233 U, 0.2 wt % 235 U, and 96.8 wt % 238 U.
 - Reflector 0.25 cm thick Type 304 stainless steel tank and 2 cm of water
 - EALF is 0.0631 eV
 - k_{eff} calculated for this system is 0.9690 ± 0.0002.
 - No experiments with $c_k \ge 0.7$

Covariance Data – ²³³U Fission

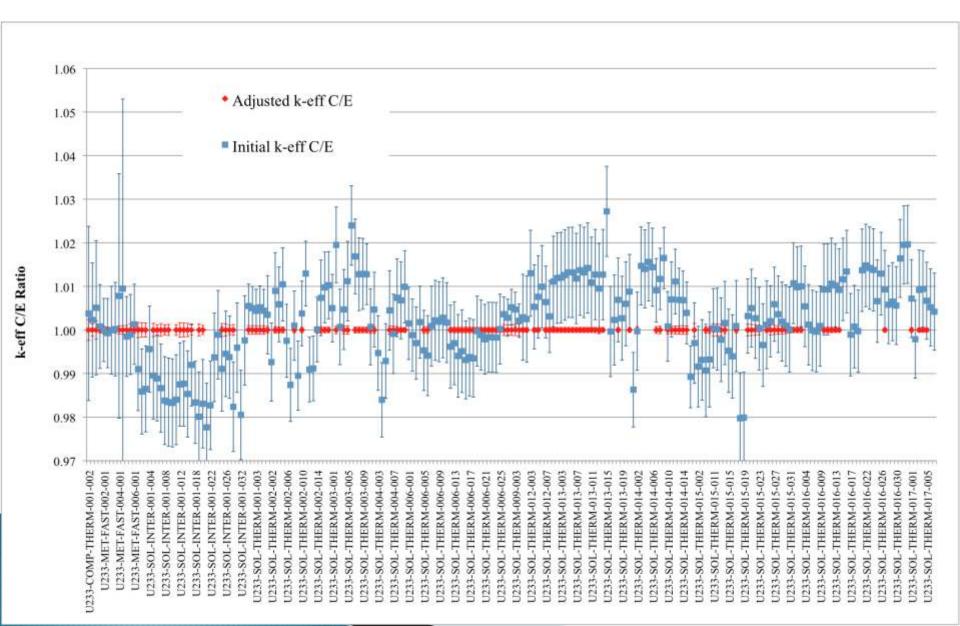
Uncertainty in Applications due to Covariance Data

System	Standard deviation (%)	Top six contributors to standard deviation (%)	
Application 1	0.937	233 U χ to 233 U χ	0.819
		¹ H elastic to ¹ H elastic	0.320
		¹⁶ O elastic to ¹⁶ O elastic	0.194
		233 U n, γ to 233 U n, γ	0.174
		²³³ U nubar to ²³³ U nubar	0.145
		²³³ U fission to ²³³ U fission	0.117
Application 3	0.515	14 N n,p to 14 N n,p	0.346
		238 U n, γ to 238 U n, γ	0.233
		²³³ U fission to ²³³ U fission	0.173
		1 H n, γ to 1 H n, γ	0.145
		233 U χ to 233 U χ	0.136
		²³³ U nubar to ²³³ U nubar	0.135

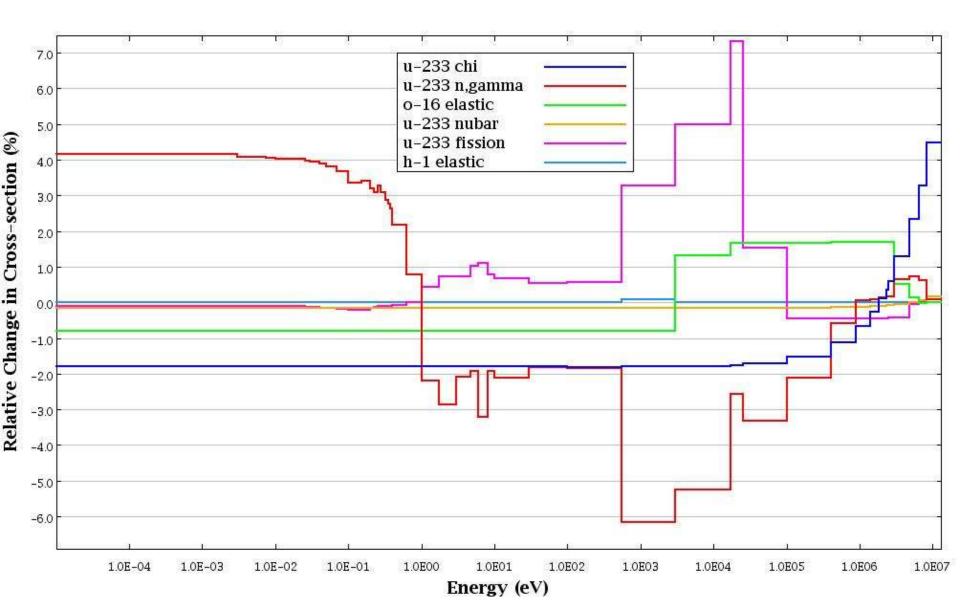

Analysis Methods

- SCALE 5.1 TSUNAMI tools TSUNAMI-3D, TSUNAMI-1D were used to generate k_{eff} sensitivity data for the applications and 672 critical experiments from 101 ICSBEP evaluations
 - 232 ²³³U configurations
 - 28 mixed U/Pu configurations
 - 153 high uranium enrichment configurations
 - 255 low uranium enrichment configurations
- Pre-release SCALE 6.0 TSURFER Code was applied to 1066 benchmarks as a demonstration of the technique

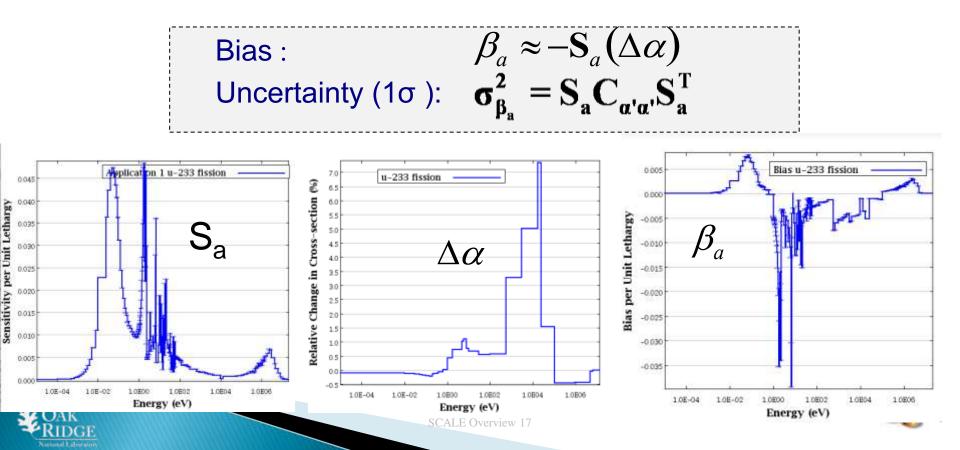
²³³U Systems from 2009 ICSBEP Handbook Distribution k_{eff} C/E and Experimental Uncertainty


Consistency Assessment

- TSURFER minimizes experimental and calculated differences by adjusting:
 - Measured data, within uncertainties
 - Cross sections, within uncertainties, which impact computed values through sensitivities
- All identified correlations are taken into account
- χ² number of standard deviations a data point moves
 - Typical target is to not move any data point by more than 1.2 χ^2
- Cross section adjustments are constrained by all experiments that use the same cross sections in the same spectrum

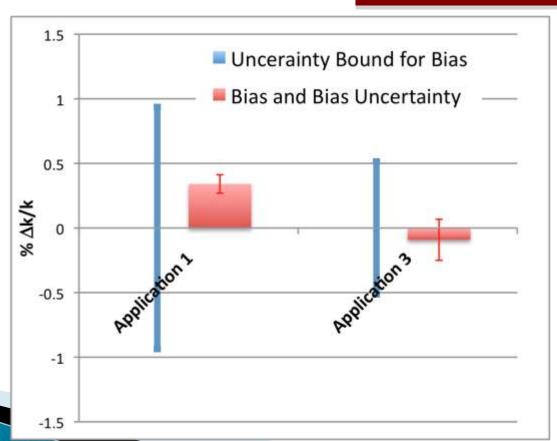


Initial and TSURFER Adjusted C/E



Cross Section Adjustments

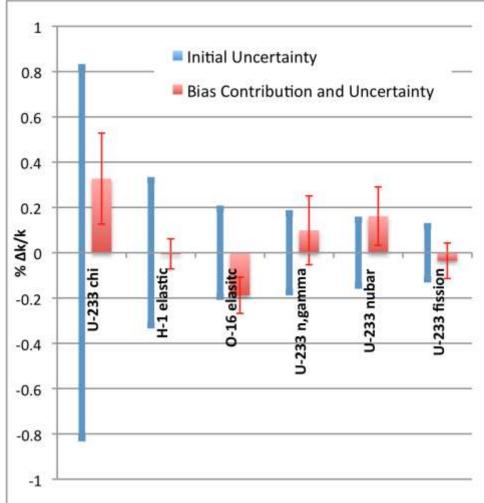
Bias Quantification


- Project adjustments in input parameter to bias in application via sensitivity coefficients.
- Determine post-adjustment uncertainty in application as uncertainty in bias.

Bias and Bias Uncertainty

Application	Bias $(\% \Delta k/k)$	Bias uncertainty $(\% \Delta k/k)$	
1	0.341	0.071	
3	-0.091	0.159	

Recall: no similar experiments for Application 3, but TSURFER can combine information from many experiments



Bias and Bias Uncertainty Contributions

Contributions to Bias for Application 1 (100% ²³³U)

Nuclide	Reaction	Contribution to bias $\% \Delta k/k$	
²³³ U	chi	3.2738E-01	
²³³ U	n,γ	9.8989E-02	
¹⁶ O	elastic	-1.8796E-01	
²³³ U	nubar	1.6175E-01	
²³³ U	fission	-3.5477E-02	
²³³ U	n,n'	-3.7597E-02	
²³³ U	elastic	6.2944E-03	
⁵⁶ Fe	n,y	6.4198E-03	
¹⁴ N	n,p	6.1571E-03	
¹ H	n,γ	5.4157E-03	
^{1}H	elastic	-4.9899E-03	

Bias Uncertainty Assessment

- Where experimental data are inconsistent or not available, cross section uncertainties remain after the adjustment procedure as an uncertainty in the bias.
- The adjusted covariance data provides a detailed assessment of bias uncertainties.

System	Standard deviation (%)	Top six contributors to standard deviation (%)	
Application 1	0.071	²³³ U chi to ²³³ U chi	0.201
		233 U n, γ to 233 U chi	-0.198
		²³³ U nubar to ²³³ U chi	-0.157
		²³³ U n,γ to ²³³ U n,γ	0.152
		²³³ U nubar to ²³³ U nubar	0.129
		¹⁶ O elastic to ²³³ U chi	-0.080
Application 3	0.159	²³³ U fission to ²³³ U fission	0.132
		²³³ U nubar to ²³³ U nubar	0.120
		¹⁴ N n,p to ¹⁴ N n,p	0.104
		²³³ U fission to ²³³ U nubar	-0.100
		¹ H n,γ to ²³³ U fission	-0.086
		238 U n, γ to 238 U n, γ	0.078

Energy-Dependent Bias

 Multiplying change in cross section by sensitivity to the cross section produces an energy-dependent bias assessment.

Conclusions

- TSURFER provides a unique tool for bias and bias uncertainty assessment.
- Sources of bias from many different experiments testing different materials can be simultaneously assessed using consistency or "assimilation" methods.
- Details of sources of bias and bias uncertainty can be quantified on a nuclidereaction specific basis.

