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Abstract

The adjoint-weighted perturbation capability in MCNP6 is employed to calculate 

sensitivity coefficients of k-eigenvalue to cross sections.  The results from 

MCNP6 are compared against analytic solutions, discrete ordinates calculations, 

and with results generated by TSUNAMI-3D.
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Overview

• Calculating Sensitivity Coefficients

• Verification

– Analytic, infinite-medium solutions

– Discrete ordinates calculations

– TSUNAMI-3D comparisons
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Sensitivity Coefficients
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Review of Sensitivity Coefficients

• Sensitivity to cross section σx a system response R is

• Here, R is the k-eigenvalue,

• Approximation holds for small perturbation 
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Review of Adjoint-Based Perturbations

• Adjoint-based perturbation theory provides the 

following:

• where

• This can be estimated with continuous-energy Monte 

Carlo. (See Kiedrowski, Brown, Wilson, PHYSOR 2010)

• Approximation: no scattering law perturbation!
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Computing Sensitivity Coefficients

• Express change in cross section as

• Apply the relationship

• Compute sensitivity coefficients by

• Quantity kΔρ scales linearly with f; can make arbitrarily 
small until sensitivity becomes sufficiently precise.
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Analytic Verification Problem
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Reference Problem

• Infinite-medium, multigroup problem:

– Closed-form solutions simple to obtain

• Two-group cross sections:

g Σt Σc Σf ν χ Σsg1 Σsg2

1 2 1/2 1/2 3/4 1 1/2 1/2

2 3 1 1 9/2 0 0 1
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Analytic Solutions

• Solution for k:

• Forward and adjoint solutions:
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Sensitivity Coefficient Verification

Exact MCNP C/R

σc1 -1/3 -0.333323 +/- 0.000135 0.99997

σc2 -3/8 -0.374922 +/- 0.000195 0.99979

σf2 3/8 +0.375192 +/- 0.000263 1.00051

σs12 5/12 +0.416644 +/- 0.000214 0.99995
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Discrete Ordinates Verification
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Benchmark Problem

• Modeled HEU-SOL-THERM-012 from ICSBEP Handbook 

in both MCNP and Partisn

HEU

Solution

“Infinite” Water Reflector

Aluminum Shell Find sensitivity 

for water density 

variation.
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Verification Result

• Problem chosen because:

– Adjoint-based perturbation theory captures results compared 

to direct discrete ordinates calculation within 6 percent.

– Differential operator perturbation technique is different from 

direct calculation with adjoint by about 66%.

– Flux is nearly isotropic over large domain; approximation from 

no scattering law change should not have adverse impact

• Result:

Partisn MCNP C/R

0.0157639 0.0160498 +/- 0.0004630 1.01814
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TSUNAMI-3D Comparison
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TSUNAMI-3D Comparison

• MCNP (ENDF-VI) compared against result generated by 

TSUNAMI-3D using 238-energy groups with KENO.

• Test problem: Bare, homogeneous sphere containing 

hydrogen, carbon, fluorine, and LEU (see B.T. Rearden, 

NS&E 2004).

– Anisotropic scattering is important!
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Results

TSUNAMI-3D MCNP C/R

Total +3.314 x 10-1 +3.173 x 10-1 0.957

Capture -5.081 x 10-1 -5.019 x 10-1 0.988

Fission +3.964 x 10-1 +3.978 x 10-1 1.004

Elastic +4.115 x 10-1 +4.219 x 10-1 1.025

Inelastic +2.950 x 10-2 +2.198 x 10-2 0.745
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Discussion

• Fission and capture agree within 2%, inelastic scatter is 

different by more than 25%.

• Differences in scattering (both elastic and inelastic) are 

worse on a per-isotope sensitivity basis

• Evidence points to MCNP approximation of not 

perturbing energy/angle transfer laws

– Note: differential operator also struggles with scattering
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Forward/Adjoint P1 in a Similar Problem*

Forward P1,1 flux
by region
(normalized by scalar flux by region)

Adjoint P1,1 flux
by region
(normalized by adjoint scalar flux by region)

*Figure courtesy of B.T. Rearden of ORNL
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Summary
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Conclusions

• MCNP adjoint-perturbation capability shows good 

agreement when scattering law perturbation is not 

significant (i.e., fission cross section perturbations)

• Future work is needed on perturbing continuous-

energy scattering laws
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Questions?


