Dispelling the Myth of Super-Moderators

Shean P. Monahan Mark V. Mitchell Charles D. Harmon II

UNCLASSIFIED

Outline

Introduction

Motivation

Basic Theory

- Inelastic Scattering
- (n, xn') reactions
- Elastic Scattering

Application

UNCLASSIFIED

Introduction

Disturbing misuse of language

- Creeping into official review comments from auditing agencies
 - May lead to inappropriate response and redirection of already taxed and crucial resources
- Case in point *super-moderators*

Why should we care when presumably the intent is known

- We are professionals and as such we have an obligation to be technically accurate
- Mentoring new staff is difficult enough without using inaccurate and incorrect terminology

UNCLASSIFIED

Basic Theory of Moderation

Neutrons slow down via interactions with nuclei

- Compound nucleus interactions
 - Inelastic scattering, (n,n')
 - (n, xn') reactions
- Elastic scattering

Compound nucleus reactions

- Colliding neutron is captured by the nucleus
- Threshold reactions
- For all but very energetic neutrons the inelastic spectrum is discrete
- Regardless the inelastic spectrum does not include a thermal component

UNCLASSIFIED

Reference Frames

Static System

Center of Mass System

UNCLASSIFIED

Elastic Scattering Energy Loss

$$E'_{s} = \frac{1}{2} E_{s} \left[(1 + \alpha) + (1 - \alpha) \cos \theta \right] \quad \text{In which} \quad \alpha = \left(\frac{A - 1}{A + 1} \right)^{2}$$

Therefore for forward scattering, i.e., no scatter

$$\theta = 0$$
 $E'_s = E_s$ No Energy Loss

And for maximum scatter (head on)

 $\theta = 180$ $E'_s = \alpha E_s$ Maximum Energy Loss

UNCLASSIFIED

The Only Super Moderator

$$\boldsymbol{\alpha} = \left(\frac{A-1}{A+1}\right)^2$$

- For hydrogen A=1 and α=0
- $\alpha \Rightarrow 1$ as A increases
- A neutron can
 - Lose all of its energy in a single collision with hydrogen
 - Lose only a fraction of its energy in collisions with all other nuclei

UNCLASSIFIED

Hydrogen Is As Good As It Gets

Nucleus	Mass Number	α	Maximum Percent Loss	Average # Collisions 2 MeV to Thermal
Hydrogen	1	0	100.0	26
Deuterium	2	0.111	88.89	31
Beryllium	9	0.640	36.0	92
Carbon	12	0.716	28.4	118
Oxygen	16	0.779	22.14	155
Iron	56	0.931	6.9	518
²³⁹ Pu	239	0.983	1.7	2130

UNCLASSIFIED

Sources of Confusion?

- Be moderated systems can have a smaller minimum critical mass water moderated systems
- Moderation by Be and C can lead to lower limiting critical densities
- Poor Nomenclature has resulted from applying critical mass results as a "definition" of a physical process
 - Moderation is a process governed by kinematics;
 - The definition is not linked to critical mass data;
 - If it were the definition would be variable

UNCLASSIFIED

Critical Mass Curve Comparison

Water Reflected Spherical Systems

The Actual Cause

- A function of 9 independent (but degenerate) factors only one of which is moderation
- For a smaller critical mass to result
 - Fission (absorption) fraction must be higher, either
 - There is less leakage

OR

- Greater fraction of thermal neutrons are available
- In fact both of these are true

UNCLASSIFIED

Values @ Minimum Critical Mass

Material	M	x/Pu ratio	Σ _a Mod	Mass (kg) ^{Mod}	Core
	(grams)				Volume (L)
Hydrogen _{σa} =0.332b	517 (30.6 g/L)	865	2.2 x 10 ⁻²	16.9	16.9
Beryllium σ _a =0.0091b	469 (2.6 g/L)	19,140	1.1 x 10 ⁻³	339	183
Carbon σ _a =0.0034b	1284 (1.3 g/L)	34,874	3.8 x 10 ⁻⁴	2250	1000

LOS Alamos

UNCLASSIFIED

Break Even Point Values (M_c=5.49 Kg)

Material	ρ _{c (g/L)}	x/Pu ratio	Mass (kg) ^{Mod}	Core	System
				Volume (L)	Volume (L)
Hydrogen	1019	21.1	4.36	4.63	70
Beryllium	122.4	399	82.4	44.8	217
Carbon	17.4	2578	709	315	794

Los Alamos

UNCLASSIFIED

Application

- The fact that Be moderated systems has a marginally lower critical mass is of no practical importance
- The amount of material required just to re-establish the reactivity to undiluted system is very large
 - Processes that would encounter such situations are very rare
 - Experiments designed to test this very attribute
 - Exotic fuel manufacturing that does not exist as of now

UNCLASSIFIED

5 kg Single Parameter Subcritical Limit Unit Size Comparison

UNCLASSIFIED

Reflectors

 There are conditions in which there are reflecting materials superior to water

- Generalizations are just a imprudent in the case of reflectors as in the case of moderators
- There are the same multiple competing factors of scattering that effects leakage, moderation, and absorption

UNCLASSIFIED

Conclusion

- The language used by professionals needs to be correct, particularly in a safety discipline
- Basic collision dynamics demonstrates there is no better moderator than hydrogen
- Smaller critical masses for Be are not due to superior moderation but less absorption and leakage
- In all but esoteric applications it is not a practical concern

UNCLASSIFIED

