

Enhancements in SCALE 6.1

Brad Rearden SCALE Project Leader November 9, 2010

Current Nuclear Data Libraries with Continuous-Energy Resonance Processing

(In t

1×10¹

£1×10⁻ 1×10⁻ 1×10⁻ 1×10⁻ High-Resolution Geometry Modeling in Monte Carlo and Deterministic Transport

Cross-section processing

Energy (ev)

Macroscopic Absorption Cross Sections 2_ 0 - 10 ev

Reactor physics

 ${}^{40}Pu = 6.43 \times 10^{11}$ ${}^{41}Pu = 4.34 \times 10^{11}$

Criticality safety

Group 10 Values

Radiation shielding

2.15013 - 1.00015

64611 - 2.15613

0210 - 4.64213

15808 - 1.00810

.64006 - 2.15008

1.15803 - 1.00805 1.64801 - 2.15803

00600 - 4.64601

156-02 - 1.00600

£4E-04 - 2.15E-03

02+05 - 4:642+04

15E-07 = 1.00E-05

4.648-09-2.158-07

006-10 - 4.646-09

- Sensitivity and uncertainty analysis
- Spent fuel and HLW characterization

614000E-0?

110-01

10044

10.04

1

Sensitivity and Uncertainty Analysis

SCALE Overview 2

41 36 31 26 21 16 11 6 1 Energy Group (u=235-fission)

1 225

220 221 Z

SCALE 6.1 Highlights

- Objective of SCALE 6.1 release is primarily enhancements in two key areas:
 - TSUNAMI Mesh Volumes
 - TRITON Bugs
- Other features developed under specific projects are captured in this release

Criticality Safety

KENO

- Easier mesh specification
- Improved mesh volume calculation
- Improved mesh output edits
- Region mean free paths in CE KENOs enabled
- Fission source distribution output
 - For CAAS or visualization
 - MG/CE, KENO V.a/KENO-VI
 - Exported in .3dmap format with uncertainties

KENO Mesh Accumulator

- For TSUNAMI, forward and adjoint fluxes are accumulated over same mesh, then multiplied together prior to summing over a region (e.g. all fuel pins).
- Volume of each material within each mesh region is required.

Array Without Automated Mesh

6×6 Array of 4-region cell for 144 regions

4 flux regions fuel, gap, clad, mod.

Automated Mesh (1.375 x pitch)

Automated Mesh Fuel Regions

Automated Mesh **Moderator Regions**

9

Automated Mesh Clad Regions

Automated Mesh Single Fuel Mesh

Automated Mesh Single Clad Mesh

Automated Mesh Single Moderator Mesh

Evolution of TSUNAMI Mesh

Example: PU-SOL-THERM-014

- Pu solution cans (~30 cm)
- Large room (~15 m)
- Desire 3 cm mesh for fissile solution
- Uniform mesh would create ~80,000,000 mesh intervals

SCALE 6.0 Planar Mesh

- Mesh refined across fissile solution
- Requires ~140,000 mesh intervals
- ~500 MB of RAM

Planar Mesh

SCALE 6.0

read gridgeometry 1

xplanes

-750 -700 -650 -600 -550 -500 -450 -400 -350 -331 -325 -322 -319 -316 -313 -311 -310 -307 -304 -301 -298 -295 -292 -291 -271 -261 -241 -221 -201 -180 -175 -172 -169 -166 -163 -160 -160 -157 -154 -151 -148 -145 -142 -139 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

end

yplanes

-585 -550 -500 -450 -400 -350 -300 -250 -200 -150 -116 -110 -107 -104 -101 -98 -96 -95 -92 -89 -86 -83 -80 -77 -76 -56 -36 -16 4 24 40 43 44 46 49 52 55 58 61 64 64 67 70 84 100 150 200 250 300 350 400 450 500 550 585

end

zplanes

-540 -500 -450 -406 -386 -366 -346 -345 -342 -339 -336 -333 -330 -327 -326 -324 -321 -319 -316 -313 -310 -307 -306 -304 -300 -286 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 570

end

end gridgeometry

SCALE 6.1

read gride	geor	netry	1
xlinear	30	-750	750
xlinear	15	-331	-291
xlinear	15	-179	-139
ylinear	24	-585	585
ylinear	15	-116	-76
ylinear	15	44 84	L
zlinear	22	-540	570
end gridge	eome	etry	

Mesh Volume

- To compute sensitivity coefficients, the volume of each region within each mesh interval must be quantified.
- Beginning with SCALE 6.0, KENO computes the volume through a stochastic sampling process.
- SCALE 6.0 defaults:
 - 5000 points per generation for 1000 generations
- SCALE 6.1 defaults:
 - 5000 points if volume < 13,600 cm³
 - For larger volumes

 $points = \frac{volume}{ln(volume/5000)}$

Volume Input

With SCALE 6.1 defaults, PU-SOL-THERM-014 mesh volumes are computed with ~150,000,000 points for 1000 batches

- Input sampling directly read volume points=25000 batches=4000 end volume
- Input sampling density: read volume sample_den=0.1 batches=4000 end volume

Fission Source Viewing

National Laboration

Fission Source Uncertainty

Shielding Analysis - MAVRIC

- Multiple sources
- Spatial variation of sources
- Energy distributions from ORIGEN or AMPX
- Macro materials for Denovo calculation
- Cylindrical mesh grids
- MAVRIC Utilities

SCALE Overview 22

4 200 cm

Depletion and Decay

- Arbitrary group structures for COUPLE/ORIGEN
- Support for ENDF/B-VII decay libraries
- Energy-dependent fission yields
- Cross section transitions from multiple sources
 - JEFF-3.0/A based AMPX libraries
 - AMPX library from SCALE
 - Input from user

Reactor Physics

- TRITON bug fixes as documented newsletter
 - KMART updates to correct mixture power distributions
 - KENO blocks START, VOLUME, and PLOT now work
- TRITON enhancements
 - Greatly improved runtime for large models
 - Speedup in cell data and reaction rate calculations
- Parallel capabilities
 - Threaded NEWT with OpenMP
 - Parallel branch cases with RUNNER (MPI)
- NEWT improvements
 - HTGR prismatic geometry
 - n-gamma libraries
 - CMFD
 - Better grid generation
 - Better few-group cross section generation
 - Improved output edits

Sensitivity and Uncertainty

- Improved KENO mesh and mesh volume greatly benefits TSUNAMI-3D
- TSUNAMI-2D based on NEWT is introduced
- Generalized perturbation theory calculations in 1D and 2D provide sensitivities/uncertainties due to cross sections for:
 - Flux ratios
 - Reaction rate ratios
 - Few group cross sections, etc
- TSURFER
 - Additional uncertainty edits
 - Additional plots
 - Improved output

TSURFER Output

Nuclear Data

- Improved probability table data for unresolved resonance region for U and Pu
- > 238-group neutron libraries
 - New weighting spectrum with modified tie-in of fission spectrum - better VHTR performance
 - Use of double-precision in AMPX routines
- ORIGEN Library
 - ENDF/B-VII decay and fission libraries with JEFF multigroup cross sections in many group structures
 - Decay libraries with 2227 nuclides
 - 174 actinides
 - 1149 fission products
 - 904 structural activation materials
- Coupled n-gamma libraries
 - Many improvements in gamma yield data

Graphical User Interfaces

GeeWiz

- Substantial improvement in functionality and stability
- Added code support
 - STARBUCS
 - TRITON
 - MAVRIC enhancements
 - TSUNAMI-GPT
- Javapeño
 - CE KENO cross section plotting
 - OPUS plotting (replaces PlotOPUS)
 - NEWT contour plots
 - Custom installer

Continuous-energy Plot

00

X u-238 n,gamma, T=293.0K

Infrastructure Moderization

GForge

Collaborative development environment with web interface.

- All issues can be identified and tracked.
- SCALE QA now conducted and tracked within GForge
- SCALE development ideas and issues are easily tracked to resolution
- SCALE Help migrated to GForge

Lefebra

wid Hartmandrube

changed status to Closed

Infrastructure Moderization

Build system

- CMake build system
- Same code and build system will be used on all platforms, Linux, Mac, Windows
- 64-bit Windows build for first time
- Supported platforms:
 - Linux 32- and 64-bit
 - Mac 32- and 64-bit
 - Windows 32- and 64-bit

New Installer

Consistent experience on Linux, Mac, Windows

	Select the packs you want to install: Q Note: Graved packs are required.	
	✓ SCALE Binaries ✓ Sample Problems ✓ SCALE Data ✓ Javapeno ✓ JeeWiz ✓ PlotOpus ✓ OrigenArp ✓ Keno3d ✓ USLStats ✓ Vibe ✓ Meshview ✓ Executables for Darwin_10, Darwin_9, Windows_Linux_i686 and Linux_x86_64	1.85 GB 5.47 GB 20.6 GB 21.31 MB 32.03 MB 4.19 MB 9.06 MB 45.52 MB 4.66 MB 3.22 MB 2.11 MB 15 42 MB
(Made with IzPa	Total space Required: Available space: ck - http://izpack.org/)	28.29 GB 126.46 GB

Schedule

- SCALE 6.1 beta sent to limited distribution
- Delivery to RSICC by end of November
- Distribution to end-users after a few weeks of testing at RSICC
 - Likely late 2010 or early 2011

