

Integral Cross-Sections and Other Useful Information Extracted from Spent Fuel Data

Hans Toffer

(Consultant for CH2M HILL Plateau Remediation Company) Warren Wittekind, Raymond Puigh, David Erickson (Fluor Government Group) Michael Westfall (Consultant)

2010 ANS Winter Meeting November 7 – 11, 2010

Contents

- Why Bother With Actinides? (Th-Lr)
- Introduction Background
- Burn-up Credit (BUC)
- Reactors and Special Tests
- Applications of Actinides
- Am-Cm Test
- Conclusions and Recommendations

Why Bother With Actinides?

- Stepping Stones to Higher Mass Elements
 - Example Cf-252
- Burn-up Code and Cross Sections Need Validation
- Extensive Experiments With Actinides
 - 75+ Data Sets N Reactor and Single Pass Reactors
- Actinides Reactions Separated into Reaction Trees
 - U-Np-Pu
 - Am-Cm
 - Th-U

Introduction – Background

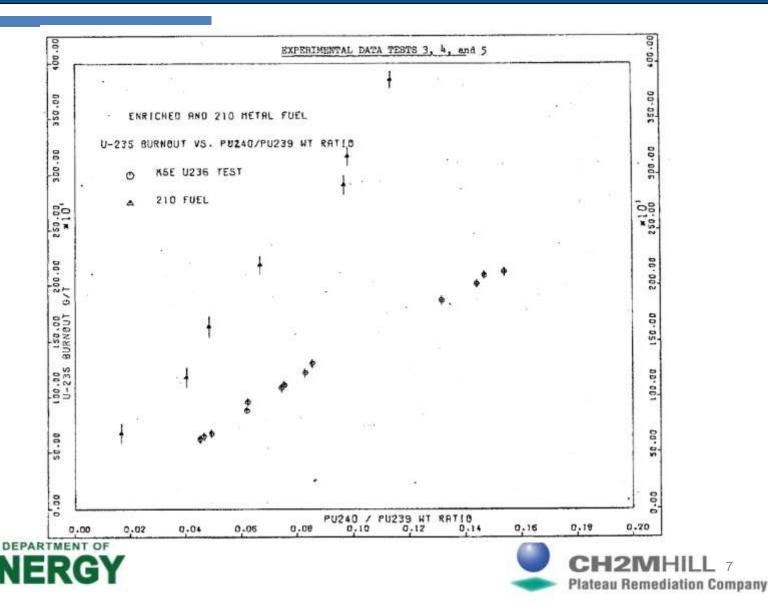
- 1950's-1960's Reliance on Experiments for Design and Operation Support
- Code Development Needs Validation Data
- Types of Data -- Point vs. Core Average
- Past Reactor Irradiations -- Source of Transmutation Data
- Low Enriched Uranium Ranges from Depleted to 2.1% U-235

Chronology of Hanford Reactors

Reactor	Start	Shutdown	Power Level	
Designation	Operation		Design	Maximum
B Reactor	9/26/1944	2/12/1968	250MW	2090MW
D	12/17/1944	6/26/1967	250MW	2090MW
F	2/25/1945	6/25/1965	250MW	2090MW
DR	10/3/1950	12/30/1964	250MW	2090MW
Н	10/29/1949	4/21/1965	400MW	2090MW
С	10/18/1952	4/25/1969	600MW	2460MW
KW	1/4/1955	2/1/1970	1800MW	4620MW
KE	4/17/1955	1/29/1971	1800MW	4620MW
Ν	12/31/1963	1/1987	4000MW	4800MW

Introduction – Background

- 1950's-1960's Reliance on Experiments for Design and Operation Support
- Code Development Needs Validation Data
- Types of Data -- Point vs. Core Average
- Past Reactor Irradiations -- Source of Transmutation Data
- Low Enriched Uranium Ranges from Depleted to 2.1% U-235

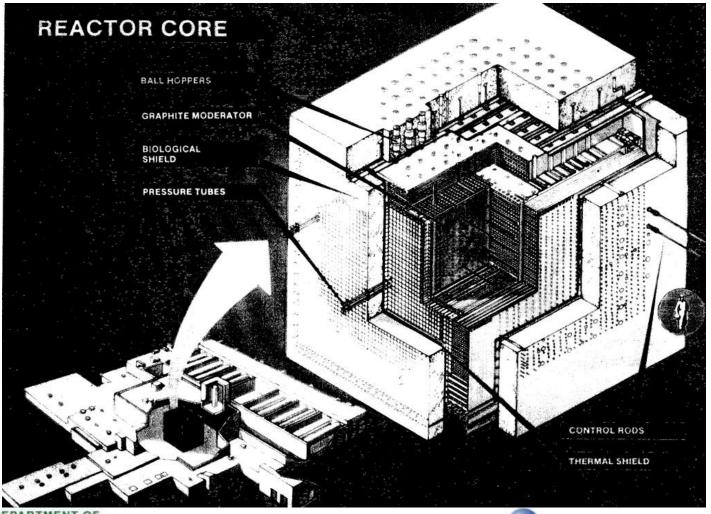

Np Production vs Pu-240/Pu-239 Wt Ratio

U-235 Burnout vs Pu-240/Pu-239 Wt Ratio

S

Typical Radiochemical Data

NUCLEAR FUEL BURNUP ANALYSIS RESULTS [ND-148 IDMS METHOD]


·· ····

LAB, ND.: SAMPLE I.D.:	8045 UNC-840	BO46 UNC-BBI	8047 UNC-880		
U [GRAMS/G] (1)	1.067E-01	3.846E-02	1.574E-01		
U [GRAMS/Q] {1} U [ATCMS/Q] {1} U-234 WT % U-235 WT % U-236 WT % U-238 WT %	1.067E-01 2.700E+20 0.009 { 1} 1.083 { 6} 0.062 { 1} 98.845 { 10}	3.844E-02 9.729E+19 0.008 { 1} 0.855 { 4} 0.064 { 1} 99.072 { 10}	1.574E-01 3.983E+20 0.009 { 1} 1.096 { 6} 0.060 { 1} 98.833 { 10}		
PU [GRAMS/G] {1} PU [ATOMS/G] {1} PU-238 WT % PU-239 WT % PU-240 WT % PU-241 WT % PU-242 WT %	1.297E-04 3.244E+17 0.035 { 4} 91.834 { 80} 7.147 { 50} 0.951 { 7} 0.033 { 1}	3.759E-05 9.468E+16 0.038 { 4} 93.640 { 80} 5.633 { 50} 0.671 { 7} 0.018 { 1}	1.820E-04 4.584E+17 0.036 { 4} 92.179 { 80} 6.875 { 50} 0.880 { 7} 0.030 { 1}		
FP-TOT [GRAMS/G] {1}	1.854E-04	4. 185E-05	2.551E-04		
ND-148 [ATOMS/G] {1}	7.993E+15	1. B09E+15	1.100E+16		
ND-143/148 (2) ND-144/148 (2) ND-145/148 ND-146/148 ND-150/148	3.23664 2.60321 2.19879 1.74709 0.42267	3.09571 2.47299 2.14060 1.71613 0.43825	3.25310 2.60679 2.20459 1.74900 0.42365		
ND-148 E.F.Y. {3}	1.686	1.691	1.686		
PU-239 [FF] (3) PU-240 [FF] PU-241 [FF] U-235 [FF] U-238 [FF]	0.07310 0.00000 0.00104 0.65744 0.04643	0.09783 0.00000 0.00076 0.84177 0.05964	0.08886 0.00000 0.00071 0.86381 0.04641		
BURNUP CALCULATIONS: (4)	UNC-N BASED	UNC-N BASED	UNC-N BASED		
MWD/FISSION (3)	3.765E-22	3.767E-22	3. 764E-22		
AVG. AT. WT. FISSIONED	235, 543	235. 620	235. 545		
BU ATOM % [ND-148]	1.750E-01	1.097E-01	1.633E-01		
BU MWD/MTM [ND-148]	1.668E+03	1.045E+03	1.555E+03		

N Reactor Schematic

Burn-up Credit (BUC)

- Benchmarks for BUC Calculation Scarce
- Burn-up Credit in Criticality Safety Analysis Requires
 Validation
- Past Reactor Data Rich and Untapped
- Hanford Data Would Mesh with Power Plant Info at 2.1% U-235

Reactors and Special Tests

- Nine Reactors (1944-1987) Graphite Moderated, Water Cooled, Cylindrical Fuel in Horizontal Process Tubes, Mission to Produce Isotopes, K Reactors Largest, N Reactor-Dual Purpose Super Cell, and Full Core Tests
- Isotope Creation: Pu-239, U-233
- Special Materials: Np, Pu-238, Am, Cm

Application of Actinides

- Power density in N Reactor Inner and Outer Fuel Tube, Use of Effective Cross-Sections Used to Improve Fuel Design
- Calibration Fuel Elements for the Fuel Segregation
 Program

Application of Actinides – Continued

- Generation of New Production Tables
 - The code, PTABLE2, solves the simultaneous boundary value differential equations for the U-Np-Pu tree.
 - Results from the end of an irradiation cycle are interacted with analytic chemical results until a match is achieved. The original effective one-group cross-section values adjusted for the chemical results represent extracted cross-sections needed to generate new isotope production tables.
 - Plans to modify PTABLE2 for other fuel cycles.

Am-Cm Test

- Definitive test to confirm production rates of higher mass actinides and decay of Cm-242 to clean Pu-238
- 6 Targets 2 each containing 10g/ft, 20g/ft, 40g/ft, Am241
- Irradiation time of 250 days. Actual discharged 10 days beyond goal
- Water and air cooled 40 years
- Now stored in Experimental Breeder Reactor II cask storage facility waiting
- Valuable transmutation info for long term storage

Conclusions and Recommendations

- Recovery of actinide cross-sections from production reactor operations and special tests is a novel and promising alternative to costly and time consuming new measurements
- Burn-up Credit could benefit from the Hanford data for validation
- Am-Cm Test should be analyzed to obtain improved build-up and decay parameters

