

Criticality Benchmark Comparisons for DAGMC

P.J. Snouffer, R.N. Slaybaugh, P.P.H. Wilson U. Wisconsin-Madison

ANS National Conference June 27, 2011

- What is DAGMC
- Project objectives
- Define faceting tolerance
- Problem descriptions
- Results
- Conclusions
- Future work
- Questions

- Direct Accelerated Geometry Monte Carlo
 - Direct use of CAD geometries without conversion
 - Simpler workflow
 - Richer geometric representation
 - Provide common domain for coupling to other analyses

- CAD geometry by solid modeler facets
 - Accelerates ray-firing vs. high-order root finding
 - Preserves nominal accuracy
 - Introduces millions of surfaces
- Oriented bounding box tree
 - Accelerates search of millions of facets

- Limited input
 - Only need data cards
- Uses MCNP5.1.51 physics
- Used for fusion neutronics shielding

- Validate DAG-MCNP5 with criticality experiments
- Determine the effect of faceting tolerances on k_{eff}
- Determine faceting tolerance guidelines for users

- Approximate cells with planar facets
 - Introduces volume discrepancies into model
- User sets faceting tolerance on the command line
 - Maximum distance facets can be from the analytical surface
 - Usually set to 10 microns
- Lower faceting tolerances have smaller volume discrepancies but longer run times

FRACE TING Differences Example

10⁻² cm faceting tolerance 10212 facets 2792.13 cm³

10⁻⁴ cm faceting tolerance 398348 facets 2796.44 cm³

Analytic Volume: 2796.55 cm³

- Three test problems
 - 3 uranium cylinders
 - Plutonium buttons
 - Godiva
- Ran DAG-MCNP5 with faceting tolerances of 10⁻², 10⁻³, 10⁻⁴, 10⁻⁵, and 10⁻⁶ cm and compared to MCNP5 and benchmark results

- Three unreflected uranium cylinders containing a solution of UO₂F₂ and water
 - Solution in 10.15 cm radius cylinder 41.1 cm tall
 - Al 0.15 cm thick on all sides
 - U enriched to 93.2% U²³⁵
 - 0.090 g of U²³⁵/cm³
 - H to U^{235} ratio of 309
 - Cylinders in equilateral triangle with a surface separation of 0.38 cm
- 30 inactive cycles, 3270 total cycles, 40000 particles per cycles

- 3x3 array of rods on a table
- Each rod contains three Pu cells separated by 7.70 cm center-to-center vertical spacing
- 9.60 cm center-to-center rod spacing
- Pu enriched to 93.56% Pu²³⁹, 5.97% Pu²⁴⁰, 0.46% Pu²⁴¹, and 0.01% Pu²⁴²
- Rods have various spacers and heat sinks
- Modeled without walls
- 60 inactive cycles, 150 total cycles, 432000 particles per cycles

- Bare uranium sphere
- Enriched to 93.71% U²³⁵
- 8.741 cm radius
- 60 inactive cycles, 150 total cycles, 432000 particles per cycles

Relative Fissile Volume Discrepancies

Difference from Experimental Eigenvalue

Difference from MCNP5 Eigenvalue

- Faceting tolerance significantly changes the results for DAG-MCNP5
- High faceting tolerances result in poor agreement with the MCNP5 results
- Optimal faceting tolerance is between 10⁻⁴ cm and 10⁻⁵ cm
- DAG-MCNP5 appears to be as valid as MCNP5 if an appropriate faceting tolerance is used

- Document DAG-MCNP5 with more critical systems, shielding applications, and analytical problems
- Investigate why lower faceting tolerances does not necessarily mean better agreement with MCNP5
- Research alternative faceting schemes to preserve volume better

- T.J. TAUTGES, P.P.H. Wilson, et al, "Acceleration Techniques for Direct Use of CAD-Based Geometries in Monte Carlo Radiation Transport," Proc. of the 2009 Int'l Conf. on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, NY, May 3-7 (2009).
- 2. T.J. TAUTGES, "CGM: A geometry interface for mesh generation, analysis, and other applications," Engineering with Computers, 17, pp. 299-314 (2001)
- 3. T.J. TAUTGES, R. MEYERS, K. MERKLEY, et al, "MOAB: A Mesh Oriented Database," SAND2004-1592, Sandia National Laboratories, April (2004)
- 4. X-5 Monte Carlo Team, "MCNP-A General Monte Carlo N-Particle Transport Code, Version 5 - Vol. I: Overview and Theory," LA-UR-03-1987
- 5. D.J. WHALEN, D. A. CARDON, J. L. UHLE, J. S. HENDRICKS, MCNP: Neutron Benchmark Problems, Los Alamos Report LA-12212, Los Alamos National Laboratory, Los Alamos, NM, (1991).
- 6. NEA NUCLEAR SCIENCE COMMITTEE, International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, Idaho National Laboratory, Idaho Falls, ID (2007).

Questions?

Time of Runs

Table of Keff Results

	Godiva	U Cylinders	Pu Buttons
Experiment	1.0000 ± 0.0010	1.000 ± 0.0010	1.000 ± 0.0030
MCNP5	0.99998 ± 0.00009	0.99827 ± 0.00008	1.00093 ± 0.00010
DAG-2	0.99953 ± 0.00010	0.99698 ± 0.00009	1.00033 ± 0.00009
DAG-3	0.99978 ± 0.0009	0.99805 ± 0.00008	1.00062 ± 0.00011
DAG-4	1.00001 ± 0.00010	0.99803 ± 0.00008	1.00092 ± 0.00011
DAG-5	0.99994 ± 0.00009	0.99809 ± 0.00009	1.00081 ± 0.00011
DAG-6	0.99994 ± 0.00009	0.99821 ± 0.00009	1.00089 ± 0.00011