

CAAS Detector Placement Using MAVRIC

Larry L. Wetzel, PE, B&W, NOG-L Brandon O'Donnell, B&W,NOG-L William D. Newmyer, NSA

2012 ANS Winter Meeting

NCSD Data Analysis in Nuclear Criticality Safety – II Thursday, November 15, 2012

Regulatory Requirements

- B&W NOG-L is a NRC Licensed Facility
 - 10 CFR 70.24
 - ANSI/ANS-8.3
 - Regulatory Guide 3.71 Endorses ANSI/ANS-8.3 except for:
 - Requires criticality alarm systems in each area in which special nuclear material is handled, used, or stored
 - Requires monitored area be covered by two criticality detectors
 - Requires monitoring system be capable of detecting a nuclear criticality that produces an absorbed dose in soft tissue of 20 rads of combined neutron and gamma radiation at an unshielded distance of 2 meters from the reacting material within 1 minute.

Analytic Approach

- CIDAS system is a gamma detection system
 - 3 loops of detectors, Blue, White, and Yellow
 - 2 of 3 loops must alarm to activate the system
 - Detectors were spread out, not in triplets
 - Set point was 100 mr/hr
 - Calculations used mean dose rate 2σ > 150 mr/hr

Source Types

- Operations involve HEU and LEU
- Unencapsulated operations
 - Solids and solutions
 - Various H/X's and solution concentrations
- Clad operations
 - Many product types and designs
- Could we set up source terms that are more realistic than the minimum in the regulation?
 - Yes but there is not sufficient time in this life

Source Types

- B&W makes LWR components
- Most likely criticality scenario will involve moderated configurations
 - Glovebox operations
 - Clad component processing
- Solution processes would involve transfers to unfavorable geometries
- Bare Spheres of HEU metal
 - → H/X of 2, 5, 200, 1000

Source Term Development

- Determine the critical spherical radius (CSAS5S)
- Create a fission source (CSAS6)
- Calculate the surface flux energy distribution (n,g)
- Calculate the dose rate at 2 m
 - Use surface flux energy distribution as a point source
- Determine source strength to produce 20 R/hr

Source Placement

Point sources on the outside of the reacting material

OR

- At the center but without the reacting material present
- Locations chosen based on where material is expected.
 - Fuel assemblies are not expected to be under a desk.
 - In unclad areas, more locations are possible
 - In solution areas, most anywhere is fair game
- Bottom line Professional Judgment was used.

- Model size required automation
 - Microsoft Excel with VBA embedded programs
 - Master Sheet (Case Identification)
 - Input Sheet (Identifies what sheet is used for which part of the input file)
 - Materials
 - Equipment and Walls
 - Bay Configurations
 - Final Layout
 - Arrays
 - Sources and Detectors
 - Results Sheets

- Equipment and Walls
 - Geometry and Media
 - Material ID brought in via lookup
- Bay Configuration
 - Insert equipment and wall as holes or as geometry
 - Equipment and walls brought in via lookup
 - Translations and media built via VBA program
- Final Layout
 - Global unit with bays inserted as holes from Bay Configuration sheet

- Source Data
 - Each of the source terms with strengths and energy distributions as available
- Sources and Detectors
 - The specified source is pulled in via lookup function
 - MeshTally built based on area of the model being run

Calculational Tools

- SCALE 6.1
 - CSAS5S, CSAS6 with CE-V7
 - MAVRIC with 27 n/19 g groups
 - Analog only
 - FW-CADIS
 - Henderson Dose Conversion Factors (1977)
 - Dose maps
 - MAVRIC generated (neutron and gamma flux and dose)
 - "response" map for gamma dose rate only
 - "above" map for dose rates >150 mr/hr
 - "boolean" map for regions where dose rate is above 150 mr/hr

Dose Rate Maps

Scale: 2000.0 cm

Where to Put the Detectors???

- Auxiliary routines query the dose rate map files
 - MTPULL extracts data based on x, y, z coordinates
- Data pulled from "above" and "boolean" map files
- Imported into Excel via VBA routine
- Tested to ensure each source point is covered by a detector of each loop
- Modify locations as needed to meet acceptance criteria

Uranium Recovery Facility

"Field"

Blue

White

Yellow

Approved

Summary

- 168 detectors for the new system
- More than the existing system
 - Primarily due to the alarm set point
 - Secondarily three loops must cover all locations
- 2 man-years of effort
- 3875 hours of computer time for cases used in the final report

Questions?