Subcriticality Measurement by Neutron Source Multiplication Method with Detected-Neutron Multiplication Factor

Nagoya University

Kyoto University

Tomohiro Endo, Akio Yamamoto Cheol Ho Pyeon, Takahiro Yagi

Contents

- Neutron source multiplication method (NSM)
- Detected-neutron multiplication factor k_{det}
- NSM expression using k_{det}
- NSM experiment at Kyoto University Critical Assembly (KUCA)
 - Numerical result of k_{det}=k_{eff} map
 - Experimental result of NSM

Neutron source multiplication method (NSM)

Subcriticality measurement technique based on

$$CR = \varepsilon \left(S + S \times k + S \times k^2 + \cdots \right) = \frac{\varepsilon S}{1 - k}$$

CR :count rate, k : neutron multiplication factor *S* :neutron source strength, ε :detector efficiency

Features

- Simple technique by neutron source and detector
- Reactivity difference $\Delta \rho$ can be measured from the reference state where k_{eff} is known beforehand

Modified NSM^[1]

Purpose of this study

Issues of Modified NSM

- Numerical results has uncertainties
 - size, nuclide compositions, cross-sections
 - analytical models
- Estimated correction factors have also uncertainties

• Purpose

- To clarify appropriate detector positions to reduce the impact of correction factors in NSM experiment
 - Ideally, correction factors nearly equal to unity
- Reconsideration of definition of measured "neutron multiplication factor"

Detected-neutron multiplication factor^[2]

- Ratio of "detected fission-neutron" to "detected all neutron"
 - Similar to the definition of "Subcritical mulitiplication factor: k_{sub}^[3]"
 - Note: reaction rate of neutron detection is used in the difinition of k_{det}

[2] T. Endo, et al., Ann. Nucl. Energy, 38, pp.2417-2427 (2011).
[3] K. Kobayashi and K. Nishihara, Nucl. Sci. Eng., 136[2], pp.272-281 (2000).

Relationship between neutron count rate and k_{det}

$$\langle \Sigma_{\rm d} \phi \rangle = \frac{\langle \Sigma_{\rm d} \phi_{\rm s} \rangle}{1 - k_{\rm det}} = \langle \Sigma_{\rm d} \phi_{\rm s} \rangle (1 + k_{\rm det} + k_{\rm det}^2 + \cdots)$$

- Detected total neutron count rate can rigorously expressed by summation of Infinite geometric series
 - 1st term: detected primary neutron due to emission of external source
 - Common ratio: k_{det}

NSM expression using k_{det}

Appropriate detector position in NSM experiment

1

$$k_{\rm eff,\,target} = \frac{1}{f_{\rm c,target}} \left\{ 1 - f_{\rm s} \left(1 - f_{\rm c,ref} k_{\rm eff,\,ref} \right) \frac{\left\langle \Sigma_{\rm d} \phi_{\rm ref} \right\rangle}{\left\langle \Sigma_{\rm d} \phi_{\rm target} \right\rangle} \right\}$$

- Detector position where k_{det}=k_{eff}
 - Conversion factor f_c is equal to unity
 - This search can be achieved by only forward calculations at reference state
- Detector position where f_s=1 is better
 Note: need for forward calculations for target state

How to numerically solve k_{det}

- 1. Forward external source problem with fission
- 2. Forward external source problem without fisison ($\nu\Sigma_f=0$ or $\nu=0$)
- **3**. ϕ_f is evaluated by $\phi \phi_s$
- 4. $k_{det} = <\Sigma_d \phi_f > / <\Sigma_d \phi >$

NSM experiment at Kyoto University Critical Assembly(KUCA)

Result of NSM for Am-Be source

Result of NSM for Cf-source

Conclusion

NSM based on k_{det}

- Good results without corrections at detector position where k_{det}=k_{eff}
 - position can be searched by calculation for reference state
- Correction factors can be evaluated by only forward calculations without adjoint ones

Future works

- Evaluation of k_{det} and correction factors using continuous energy Monte Carlo code
- Uncertainty Analysis for k_{det} and correction factors

Acknowledgement

 This work has been carried out in part under the Visiting Researcher's Program of the Research Reactor Institute, Kyoto University, FY2011.