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Presentation Outline 

• Brief background 

• Model Introduction 

• Governing Equations 

– Point Kinetics 

– Conjugate Heat Transfer 

– Radiolytic Gas Transport 

• Results 

– SILENE benchmark 

– “Methodological” Exercise 

• Conclusions 
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• Typical Multiphysics Reactivity Feedbacks: 

– Included in Model: Radiolytic Gas, Thermal Expansion, Temperature 
(Cross Sections) 

– Not included: Solution Ejection, Sloshing, Boiling, etc. 

Criticality Transients in Solution 
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Model Introduction 

• Importance: 

• Fissile solution transients often introduce a strongly time-dependent 
radiation source term for emergency planning, characterization of which is 
motivated by ANSI/ANS-8.23-2007, Nuclear Criticality Accident Emergency 
Planning and Response. 

• LA-13638 R2000, A Review of Criticality Accidents documents the nature 
and high frequency of process accidents in fissile solution or slurry. 

• Purpose: Develop a “Level 1.5” model of criticality transients in 
solution 

– Serve as flexible & powerful intermediary between “Level 2” models with 
full radiation transport & CFD (FETCH) and less exhaustive “Level 1” 
models (AGNES, CRITEX, TRACE) 
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Multiphysics Model Structure 
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Point Kinetics 

Neutron Kinetics Balance 

Delayed Neutron Precursor Concentration 
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• Point Kinetics Parameters 

– Using MCNP5-1.6’s KOPTS card 
precursor decay rates and delayed 
neutron fractions (λi’s & βi’s) along with 
mean neutron generation time (Λ) can be 
calculated using 

• Reactivity Feedback 

– Step changes in reactivity vs. feedback 
parameters (void, temperature) are used 
to inform reactivity feedback coefficients 
(αk’s) 

 

Use of MCNP5 
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Point Kinetics 

Neutron Kinetics Balance 

Delayed Neutron Precursor Concentration 
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Conjugate Heat Transfer 

Heat Conduction & Convection Volumetric Heat Source 
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B.C.’s 

• Heat continuity at internal 

boundaries 

• Natural Convection to air 

at external boundaries 

• Insulation/Symmetry at 

center boundaries 
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Conjugate Heat Transfer (cont’d) 

Incompressible Navier-Stokes momentum 
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• No slip at 

solution/cointainer walls 

• Outlet at external surface 
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Radiolytic Gas Transport 

Radiolytic Gas Bubble Volume 

Radiolytic Gas Concentration 
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B.C.’s 

• Insulation/”Reflection” at container 
walls 

• Outlet at solution surface 
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COMSOL’s built-in mesh generator used to discretize 
the geometry and Direct solvers are utilized 

• Boundary layers in narrow domains located near steep flux 

gradients and/or fissile solution boundaries 

• Free triangular mesh elsewhere 

– “fine”-”extra fine” in core region (+refinements) 

– “coarse”-”normal” elsewhere 

• Each model set up with ~10-30k elements 

– ~20 thousand DOF → <12 hr solution time 

– 1 core computer, 4 GB RAM 

• Direct Solver: COMSOL’s MUMPS & PARDISIO algorithms 

– Extendable to multi-node parallel runs 
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Transient: SILENE LE1-641 

• Background 

– Part of a series of criticality 
benchmarks performed at the Valduc 
facility in France 

– Annular, cylindrical stainless steel 
reactor with control rod chamber 

– 93% Enriched Uranyl Nitrate (~71 g 
U/l) Solution 

– 2 $ reactivity ramp over t=0:20 
seconds 

• Model 

– 2-D Axisymmetric 

– Variable time-stepping, error < 1e-2 
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Transient: SILENE LE1-641 (cont’d) 
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Comparison to Benchmark 
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SILENE LE1-641: Reactivity Contributions 
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SILENE LE1-641: Temperature 
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Distribution of radiolytic gas around the first excursion 
peak 
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Transient: “Methodological” Exercise 

– Theoretical situation postulated by 
the OECD/NEA Criticality Excursion 
Analyses Experts Group at the 2011 
International Conference on Nuclear 
Criticality 

• 93% Enriched Uranyl Nitrate (~71 g U/l) 
Solution 

• Rectangular stainless steel tank with no 
lid, surrounded by air 

– COMSOL: 3-D quarter-slice, Error < 
1e-2 
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50¢ Reactivity Step: Excursion History 
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50¢ Reactivity Step: Reactivity Feedback 
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50¢ Reactivity Step: Temperature 
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Summary and Conclusions 

• COMSOL-based models of UN solution transients were created 
via built-in & equation-based modeling 

– 3 coupled physics phenomena: neutronics, conjugate heat transfer & radiolytic 
gas transport 

– 3-D & 2-D axisymmetric geometries 

– Nuclear data derived from MCNP5-1.60 & KOPTS card 

• Results are encouraging 

– Expected power excursion behavior observed for all cases 

– Good agreement between referenced benchmark SILENE LE1-641 

• Plenty of room for improvement 

– Solution Sloshing (surface distortion, moving mesh) 

– Space-time neutron kinetics methodology (few-group diffusion) 

– Extension to other benchmarks (different geometries & solutions) 

– Solution boiling 
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